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NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION OF A QUANTILE 
REGRESSION MODEL 

 
 
1.  Introduction 

 Quantile regression models are increasingly important in applied econometrics.  This 

paper is concerned with nonparametric estimation of a quantile regression model that has a 

possibly endogenous explanatory variable and is identified through an instrumental variable.  

Specifically, we estimate the function g  in the model  

(1.1)  ( )Y g X U= +

(1.2) , ( 0 | )U W w≤ = =P q

where  is the dependent variable, Y X  is an explanatory variable, W  is an instrument for X , U  

is an unobserved random variable, and q  is a known constant satisfying .  We do not 

assume that  is independent of 

0 1q< <

( 0 | )U X≤ =P x x .  Therefore, the explanatory variable X  may 

be endogenous in the quantile regression model (1.1)-(1.2).  The function g  is assumed to satisfy 

regularity conditions but is otherwise unknown.  In particular, it does not belong to a known, 

finite-dimensional parametric family.  The data are an iid random sample, { , , 

of .  We present an estimator of 

, : 1., ,,. }ni i iY X W i =

( , , )Y X W g , derive its  rate of convergence in probability, 

and provide conditions under which this rate is the fastest possible in a minimax sense. 

2L

 Estimators of linear quantile regression models with endogenous right-hand side 

variables are described by Amemiya (1982), Powell (1983), Chen and Portnoy (1996), 

Chernozhukov and Hansen (2005a), and Ma and Koenker (2006).  Chernozhukov and Hansen 

(2004) and Januszewski (2002) use such models in economic applications.  Research on 

nonparametric estimation of quantile regression models is relatively recent.  Chesher (2003) 

considers a triangular-array structure that is not necessarily additively separable and investigates 

nonparametric identification of derivatives of the unknown functions in that structure.  

Chernozhukov and Hansen (2005b) give conditions under which g  in (1.1)-(1.2) is identified.  

Chernozhukov, Imbens, and Newey (2004) give conditions for consistency of a series estimator 

of g  in a quantile instrumental-variables model that is not necessarily additively separable.  The 

rate of convergence of their estimator is unknown.   

 There has also been research on nonparametric estimation of g  in the model  

(1.3) . ( ) ; ( | ) 0Y g X U U W w= + = =E
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Here, as in (1.1)-(1.2), X  is a possibly endogenous explanatory variable and W  is an instrument 

for X , but the quantile restriction (1.2) is replaced by the condition .  Blundell 

and Powell (2003); Darolles, Florens, and Renault (2002); Florens (2003); Newey and Powell 

(2003); Newey, Powell, and Vella (1999); Carrasco, Florens, and Renault (2005); Horowitz 

(2005); and Hall and Horowitz (2005) discuss estimators of 

( | ) 0U W w= =E

g  in (1.3).  Our estimator of g  in 

(1.1)-(1.2) is related to Hall’s and Horowitz’s (2005) estimator of g  in (1.3), but for reasons that 

will now be explained, estimating  g  in (1.1)-(1.2) presents problems that are different from 

those of estimating g  in (1.3).   

 In both (1.1)-(1.2) and (1.3), the relation that identifies g  is an operator equation, 

(1.4) g θ=T , 

say, where  is a non-singular integral operator and T θ  is a function.  T  and θ  are unknown but 

can be estimated consistently without difficulty.  However, 1−T  is discontinuous in both (1.1)-

(1.2) and (1.3), so g  cannot be estimated consistently by replacing  and T θ  in (1.4) with 

consistent estimators.  This “ill-posed inverse problem” is familiar in the literature on integral 

equations.  See, for example, Groetsch (1984); Engl, Hanke, and Neubauer (1996), and Kress 

(1999).  It is dealt with by regularizing (that is, modifying)  to make the resulting inverse 

operator continuous.  As in Darolles, Florens, and Renault (2002) and Hall and Horowitz (2005), 

we use Tikhonov (1963a, 1963b) regularization.  This consists of choosing the estimator 

T

ĝ  to 

solve 

(1.5) 
2 2ˆ ˆminimize : na

ϕ
ϕ θ ϕ

∈
− +

G
T , 

where G  is a parameter set (a set of functions in this case),  and T̂ θ̂ , respectively, are consistent 

estimators of  and T θ ;  is a sequence of non-negative constants that converges to 0 as 

; and  

{ }na

n→∞

2 2( )x dxν ν= ∫  

for any square integrable function ν .  In model (1.3), T  and  are linear operators, and the 

first-order condition for (1.5) is a linear integral equation (a Fredholm equation of the first kind).  

In (1.1)-(1.2), however,  and  are nonlinear operators, and the first-order condition for (1.5) 

is a nonlinear integral equation.   

T̂

T T̂

The nonlinearity of T  in (1.1)-(1.2) complicates the task of deriving the rate of 

convergence of ĝ  to g .  In contrast to the situation in many other nonlinear estimation 
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problems, using a Taylor series expansion to make a linear approximation to the first-order 

condition is unattractive because, as a consequence of the ill-posed inverse problem, the 

approximation error dominates other sources of estimation error and controls the rate of 

convergence of ĝ  unless very strong assumptions are made about the probability density 

function of ( .  To avoid making these assumptions, we use a modified version of a 

method developed by Engl, Hanke, and Neubauer (1996, Theorem 10.7) to derive the rate of 

convergence of 

, , )Y X W

ĝ .  This method works directly from the objective function in (1.5), rather than 

from the first-order condition.  It requires us to assume that the norm of the second Fréchet 

derivative of  is not too large (see assumption 6 in Section 3.2).  It is an open question whether 

the same rate of convergence of 

T

ĝ  can be attained without making this assumption or one that is 

similar to it.  

 The remainder of the paper is organized as follows.  Section 2 presents the estimator for 

the special case in which X  and W  are scalars. Section 3 gives conditions under which the 

estimator is consistent, obtains its rate of convergence, and shows that the rate of convergence is 

the fastest possible (in a minimax sense) under our assumptions.  Section 4 extends the results of 

sections 2 and 3 to a multivariate model in which X  is a vector that may have some exogeneous 

components.  Section 5 presents the results of a Monte Carlo investigation of the estimator’s 

finite-sample performance.  Concluding comments are given in Section 6.  The proofs of 

theorems are in the appendix, which is Section 7. 

2.  The Estimator 

 This section describes our estimator of g  in (1.1)-(1.2) when X  and W  are scalars.  Let 

 denote the distribution function of Y  conditional on |Y XWF ( , )X W .  We assume that the 

conditional distribution of Y  has a probability density function, , with respect to Lebesgue 

measure.  We also assume that (

|Y XWf

, )X W  has a probability density function with respect to 

Lebesgue measure, XWf .  Let Wf  denote the marginal density of W .  Define |YXW Y XW XWF F f=  

and |YXW Y XW XWf f f= .  Assume without loss of generality that the support of ( , )X W  is 

contained in .   2[0,1]

 It follows from (1.1)-(1.2) that 

(2.1) 
1

0
[ ( ), , ] ( )YXW WF g x x w dx qf w=∫  
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for almost every .  We assume that (2.1) uniquely identifies w g  up to a set of x  values whose 

Lebesgue measure is 0.  Chernozhukov and Hansen (2005b, Theorem 4) give sufficient 

conditions for this assumption to hold. 

 Now define the operator  on  by T 2[0,1]L

(2.2) , 
1

0
( )( ) [ ( ), , ]YXWw F x x w dϕ ϕ= ∫T x

where ϕ  is any function in .  Then (2.1) is equivalent to the operator equation 2[0,1]L

Wg qf=T . 

Identifiability of g  is equivalent to assuming that  is invertible.  Thus,  T

(2.3) 1
Wg q f−= T . 

However,  is discontinuous because the Fréchet derivative of  is a completely continuous 

operator and, therefore, has an unbounded inverse if  is “well behaved”.  Consequently, 

1−T T

YXWf g  

cannot be estimated consistently by replacing  and T Wf  with consistent estimators in (2.3).  As 

was explained in Section 1, we use Tikhonov regularization to deal with this problem.   

 We now describe the version of problem (1.5) that we solve to obtain the regularized 

estimator of g .  We assume that  has  continuous derivatives with respect to any 

combination of its arguments.

YXWf 0r >
1  Let  denote a continuously differentiable kernel function 

whose support is [ , is symmetrical about 0, and that satisfies 

K

1,1]−

(2.4)  
1

1

1if 0
( )

0 if 1 max(1, 1).

j
j

v K v dv
j r

−

=⎧
⎪= ⎨
⎪ ≤ ≤ −⎩

∫

Let  denote a bandwidth parameter, and define 0h > ( ) ( / )hK v K v h=  for any .  We 

estimate 

[ 1,1]v∈ −

Wf , , and , respectively, by YXWf YXWF

1

1ˆ ( ) ( )
n

W h
i

if w K w
nh =

= −∑ W  

 3
1

1ˆ ( , , ) ( ) ( ) ( )
n

YXW h i h i h i
i

f y x w K y Y K x X K w W
nh =

= − −∑ − , 

and 

ˆˆ ( , , ) ( , , )
y

YXW YXWF y x w f v x w dv
−∞

= ∫ . 

Define the operator  by T̂
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1

0
ˆ ˆ( )( ) [ ( ), , ]YXWw F x x w dϕ ϕ= ∫T x . 

for any 2[0,1]Lϕ∈ .  Let ϕ  denote the  norm of 2L ϕ .  Define 2
2{ [0,1]:L Mϕ ϕ= ∈ ≤G } for 

some constant M < ∞ .  Our estimator of g  is any solution to the problem 

(2.5) 
2 2ˆ ˆˆ arg min ( )n W ng S qf a

ϕ
ϕ ϕ ϕ

∈
= ≡ − +

G
T . 

Under our assumptions, a function ĝ  that minimizes  always exists, though it may not be 

unique (Bissantz, Hohage, and Munk. 2004).  

nS

3.  Theoretical Properties 

 This section gives conditions under which the estimator ĝ  of Section 2 is consistent, 

derives the rate at which 2ĝ g−  converges in probability to 0, and gives conditions under which 

this is the fastest possible rate, in a minimax sense. 

 3.1  Consistency 

 This section gives conditions under which 2ˆ 0g g− →E  as .  Define 

.  Make the following assumptions. 

n→∞

2 ( )r
n h nhδ −= + 1

 Assumption 1:  (a) The function g  is identified.  That is, (2.1) specifies ( )g x  uniquely 

up to a set of x  values whose Lebesgue measure is 0.  (b) 2g M≤  for some constant M < ∞ . 

 Assumption 2:   has  continuous derivatives with respect to any combination 

of its arguments.  These derivatives and  are bounded in absolute value by 

YXWf 0r >

YXWf M . 

 Assumption 3:  As , , n→∞ 0na → 0nδ → , and / 0n naδ → . 

 Assumption 4:  The kernel function  is supported on [ , continuously 

differentiable, symmetrical about 0, and satisfies (2.4). 

K 1,1]−

 In assumption 2,  need not be an integer.  If  is not an integer, then the assumption 

means that 

r r

[ ][ ]
1 1 1 2 2 2 1 1 1 2 2 2[ ( , , ) ( , , )] ( , , ) ( , , ) r rr

YXW YXWD f y x w f y x w M y x w y x w −− ≤ − , 

where  is the integer part of ,  denotes any order [  derivative of , and [ ]r r [ ]r
YXWD f ]r YXWf

1 2z z−  is the Euclidean distance between the points  and . 1z 2z
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 Assumptions 1(b) and 2 are standard in nonparametric estimation.  Assumptions 3 and 4 

are satisfied by a wide range of choices of ,  and .  The choice of  in applications is 

discussed in Section 3.2.  

h na K h

 Theorem 1:  Let assumptions 1-4 hold.  Then  

(3.1) 2ˆlim 0
n

g g
→∞

− =E . 

Result (3.1) implies that 2ĝ g−  converges in probability to 0 as n .  The next section 

obtains the rate of convergence. 

→∞

 3.2  Rate of Convergence 

 In model (1.3), where T  is a linear operator, the source of the ill-posed inverse problem 

is that sequence of singular values of  (or, equivalently, eigenvalues of , where  is the 

adjoint of ) converges to 0.  Consequently, the rate at which 

T *T T *T

T 2ĝ g−  converges to 0 depends 

on the rate of convergence of the singular values (or eigenvalues).  See Hall and Horowitz (2005).  

In (1.1)-(1.2), where  is nonlinear, the source of the ill-posed inverse problem is convergence 

to 0 of the singular values of the Fréchet derivative of  at 

T

T g .  Denote this derivative by gT .  

The rate of convergence of 2ĝ g−  in (1.1)-(1.2) depends on the rate of convergence of the 

singular values of gT  or, equivalently, of the eigenvalues of *
g gT T , where *

gT  is the adjoint of 

gT .  Accordingly, the regularity conditions for our rate of convergence result are framed in terms 

of the spectral representation of *
g gT T . 

 It is easy to show that the Frechet derivative of at T g  is the operator gT  defined by 

1

0
( )( ) [ ( ), , ] ( )g YXWT w f g x x w x dϕ ϕ= ∫ x

x

. 

The adjoint operator is defined by 
1*
0

( )( ) [ ( ), , ] ( )g YXWT w f g w w x x dϕ ϕ= ∫ . 

We assume that *
g gT T  is non-singular, so its eigenvalues are strictly positive.  Let 

{ , : 1,2,...}j j jλ φ =  denote the eigenvalues and orthonormal eigenvectors of *
g gT T  ordered so that 

1 2 ... 0λ λ≥ ≥ > .  Under our assumptions, *
g gT T  is a completely continuous operator, so { }jφ  

forms a basis for .  Therefore, we may write 2[0,1]L
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(3.2) 
1

( ) ( )j j
j

g x b φ
∞

=
=∑ x

dx

, 

where the Fourier coefficients  are given by jb

1

0
( ) ( )j jb g x xφ= ∫ . 

 We make the following additional assumptions. 

Assumption 5:  (a) There are constants 1α > , 1β > , and  such that 0C < ∞

1/ 2 2 1β α β− ≤ < − , 0 jj Cα λ− ≤ , and 0| |jb C j β−≤  for all . (b) Moreover, 1j ≥

max[(2 1) / 2,(3 1/ 2) /( 1)]r β α β α α≥ + − + − + . 
 Assumption 6:  There is a finite constant  such that 0L >
 
(3.3) 

2

2
1 2 1 2 1( ) ( ) ( ) 0.5g 2g g T g g L g g− − − ≤ −T T  

 
for any  and  1 2 2, [0g g L∈ ,1]
 

(3.4) 
2

1
1/j

jj

b
L

λ

∞

=

<∑ . 

 
 Assumption 7:  The tuning parameters  and  satisfy  and h na 1/(2 1)r

hh C n− +=

/(2 )
n aa C n α β α− += , where  and  are positive, finite constants. hC aC

 In assumption 5(a), α  characterizes the severity of the ill-posed inverse problem.  As α  

increases, the problem becomes more severe and, consequently, the fastest possible rate of 

convergence of any estimator of g  decreases.  The parameter β  characterizes the complexity of 

g  in the sense that if β  is large, then g  can be well approximated by the finite-dimensional 

parametric model that is obtained by truncating the series on the right-hand side of (3.2) at j J=  

for some small integer J .  A finite-dimensional g  can be estimated with a  rate of 

convergence, so the rate of convergence of 

1/ 2n−

2ĝ g−  increases as β  increases.   

Assumption (5a) places tight restrictions on the rates of convergence of jλ  and .  This 

is unavoidable for obtaining optimal rates of convergence with Tikhonov regularization.  The 

restrictions are not needed for consistent estimation, as Theorem 1 shows.  In linear inverse 

problems, the restrictions can sometimes be relaxed by using other forms of regularization.  See, 

for example, Carrasco, Florens, and Renault (2005) and Bissantz, Hohage, Munk, and Ruymgaart 

(2006).  However, there has been little research on the application of non-Tikhonov methods to 

jb
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nonlinear inverse problems, especially when  in (1.4) is unknown and must be estimated.  

Much additional research will be needed to determine the extent to which such methods are 

useful in nonlinear problems with an unknown T .   

T

Together, assumptions 2 and 5(a) imply that *
g gT T  is a completely continuous linear 

operator, so its eigenvectors form a basis for .  Assumption 2 implies that inequality (3.3) 

holds for some , so (3.3) amounts to the definition of .  Inequality (3.4) restricts the norm 

of the second Fréchet derivative of .  A sufficient condition for (3.4) is 

2[0,1]L

L < ∞ L

T

12

, , 1
sup ( , , ) / j

YXW
y x w jj

b
f y x w y

λ

−
∞

=

⎛ ⎞
⎜ ⎟∂ ∂ <
⎜ ⎟
⎝ ⎠
∑ . 

Restrictions similar to (3.4) are well-known in the theory of nonlinear integral equations.  It is an 

open question whether an estimator of g  that has our rate of convergence can be achieved 

without making an assumption similar to (3.4).  Assumptions 2 and 5(b) imply that Wf , and ϕT  

for any 2[0,1]Lϕ∈  can be estimated with a rate of convergence in probability of 

( 1/ 2 / 2) /(2 )[pO n ]β α β α− − + +  and that  can be estimated with a rate of convergence of YXWf

( 1/ 2) /(2 )[pO n ]β β α− − + .  These rates are needed to obtain our rate of convergence of ĝ .  Under 

assumption 7,  has the optimal rate of convergence for nonparametric estimation of an -times 

differentiable density function of a scalar argument.  Accordingly, h  can be chosen in 

applications by, say, cross-validation applied to 

h r

Ŵf . 

 Let 0( , , , , )M C Lα β=H H  be the set of distributions of  that satisfy 

assumptions 1, 2, 5, and 6 with fixed values of 

( , , )Y X W

M , , 0C α , β , and .  Our rate-of-convergence 

result is given by the following theorem. 

L

 Theorem 2:  Let assumptions 1-2 and 4-7 hold.  Then 

2 (2 1) /(2 )ˆlim limsup sup 0HD n H
g g Dn β β α− − +

→∞ →∞ ∈

⎡ ⎤− > =
⎣ ⎦

P
H

. 

As expected, the rate of convergence of 2ĝ g−  decreases as α  increases (the ill-posed inverse 

problem becomes more severe) and increases as β  increases ( g  increasingly resembles a finite-

dimensional parametric model). 

 The next theorem shows that the convergence rate in Theorem 2 is optimal in a minimax 

sense under our assumptions.  Let { }ng  denote any sequence of estimators of g  satisfying 

2
ng M≤  for some M < ∞ . 
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 Theorem 3:  Let assumptions 1-2 and 4-7 hold with 2α ≥ .  Then for every finite  0D >

2 (2 1) /(2 )liminf sup 0H nn H
g g Dn β β α− − +

→∞ ∈

⎡ ⎤− > >
⎣ ⎦

P
H

. 

Our proof of Theorem 3 requires 2α ≥ .  It is an open question whether the rate of 

convergence (2 1) /(2 )n β β α− − +  is optimal when 1 2α< < . 

4.  Multivariate Model 

 This section extends the results of Sections 2 and 3 to a multivariate model in which X  

is a vector that may have some exogenous components.  We rewrite model (1.1)-(1.2) as  

(4.1)  ( , )Y g X Z U= +

(4.2) , ( 0 | , )U W w Z z≤ = = =P q

where  is the dependent variable, Y X ∈  ( 1  is a vector of possibly endogenous 

explanatory variables, 

)≥

mZ ∈  ( 0  is a vector of exogenous explanatory variables, and 

 is a vector of instruments for 

)m ≥

W ∈ X ,  is an unobserved random variable, and q  is a 

known constant satisfying .  If 

U

0 1q< < 0m = , then Z  is not in the model.  The problem is to 

estimate g  nonparametrically from data consisting of the independent random sample 

. { , , , : 1,..., }i i i iY X W Z i n=

 The estimator is obtained by applying the method of Section 2 after conditioning on Z .  

To do this, let , where , 1
( ) ( / )j

h hj
K Kν

=
=∏ hν jν  is the j ’th component of the -vector ν .  

Define , ( )m hK ν  for an -vector m ν  similarly.  Let WZf  and , respectively, denote the 

probability density functions of (  and .  Define 

YXWZf

, )W Z ( , , , )Y X W Z

 ( , , , ) ( , , , )
y

YXWZ YXWZF y x w z f x w z dν ν
−∞

= ∫ . 

Define the following kernel estimators of WZf , , and : YXWZf YXWZF

 , ,
1

1ˆ ( , ) ( ) ( )
n

WZ h i m h im
i

f w z K w W K z Z
nh +

=

= −∑ − , 

 , , ,2 1
1

1ˆ ( , ) ( ) ( ) ( ) (
n

YXWZ h i h i h i m h im
i

)f w z K y Y K x X K w W K z Z
nh + +

=

= − − −∑ − , 

and 

 ˆˆ ( , , , ) ( , , , )
y

YXWZ YXWZF y x w z f x w z dν ν
−∞

= ∫ . 
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For each , define the operators  and  on  by [0,1]mz∈ zT ẑT 2[0,1]L

  
[0,1]

( )( ) [ ( ), , , ]z z YXWZ zw F x x w zϕ ϕ= ∫T dx

dx

and 

 , 
[0,1]

ˆ ˆ( )( ) [ ( ), , , ]z z YXWZ zw F x x w zϕ ϕ= ∫T

where zϕ  is any function on .   2[0,1]L

 The function g  satisfies 

(4.3) ( )( , ) ( ,z WZ )g w z qf w z=T . 

The function ( , )g z⋅  is identified if (4.3) has a unique solution (up to a set of x  values of 

Lebesgue measure 0) for the specified .  Define z 2
2{ [0,1] :Lϕ ϕ= ∈ ≤G }M  for some constant 

M < ∞ .  For each , the estimator of [0,1]mz∈ ( , )g z⋅  is any solution to the problem 

(4.4) { }2 2
[0,1] [0,1]

ˆ ˆˆ( , ) arg min [( )( ) ( , )] ( )
z

z z WZ n zg z w qf w z dw a w dw
ϕ

ϕ ϕ
∈

⋅ = − +∫ ∫�
G

T . 

 4.1  Consistency 

 This section gives conditions under which 2ˆ 0g g− →E  as n  in model (4.1)-

(4.2).  Define .  Make the following assumptions, which are extensions of 

the assumptions of Section 3.1. 

→∞

2 ( )r m
n h nhδ + −= + 1

 Assumption 1′:  (a) The function g  is identified.  (b) 2
[0,1]

( , )g x z dx M≤∫  for each 

 and some constant [0,1]mz∈ M < ∞ . 

 Assumption 2′:   has  continuous derivatives with respect to any combination 

of its arguments.  These derivatives and  are bounded in absolute value by 

YXWZf 0r >

YXWZf M . 

 Assumption 3′:  As , , n→∞ 0na → 0nδ → , and / 0n naδ → . 

 Theorem 4:  Let assumptions 1′-3′ and 4 hold.  Then for each , [0,1]mz∈

 . 2
[0,1]

ˆlim [ ( , ) ( , )] 0
n

g x z g x z dx
→∞

− =∫E

 4.2  Rate of Convergence 

 As when X  and W  are scalars, the rate of convergence of ĝ  in the multivariate model 

depends on the rate of convergence of the singular values of the Fréchet derivative of .  zT
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Accordingly, let gzT  denote the Fréchet derivative of  at zT g , and let *
gzT  denote the adjoint of 

gzT .  gzT  and *
gzT , respectively, are the operators defined by 

  
[0,1]

( )( ) [ ( , ), , , ] ( )gz z YXWZ zT w f g x z x w z xϕ ϕ= ∫ dx

dx

and 

 . *
[0,1]

( )( ) [ ( , ), , , ] ( )gz z YXWZ zT w f g w z w x z xϕ ϕ= ∫
Assume that for each , [0,1]z∈ *

gz gzT T  is non-singular.  Let {( , ) : 1,2,...}zj zj jλ φ =  denote the 

eigenvalues and eigenvectors of *
gz gzT T  ordered so that 1 2 ... 0z zλ λ≥ ≥ > .  The eigenvectors 

{ }zjφ  form a complete, orthonormal basis for .  Thus, for each  we can write 2[0,1]L 2[0,1]z L∈

 
1

( , ) ( )zj zj
j

g x z b xφ
∞

=

=∑ , 

where 

 . 
[0,1]

( , ) ( )zj zb g x z xφ= ∫ dx

 Now make the following additional assumptions, which extend those of Section 3.2. 

Assumption 5′:  (a) There are constants 1α > , 1β > , and  such that 0C < ∞

1/ 2 2 1β α β− ≤ < − , 0 zjj Cα λ− ≤ , and 0| |zjb C j β−≤  uniformly in  for all . (b) 

Moreover, , where r  is the largest root of the equation 

[0,1]mz∈ 1j ≥
*max{[ (2 1) ] / 2, }r mβ α≥ + − − *

=

r

 . 24[( 1) /(2 )] 2[( )(2 1) /(2 ) 1 ] ( 1) 0r m m r mα β α β β α+ + − + − + + + − − +
 Assumption 6′:  There is a finite constant  such that 0L >
 
 

2

2
1 2 1 2 1( ) ( ) ( ) 0.5z z g z 2g g T g g L g g− − − ≤ −T T  

 
for any  uniformly in and  1 2 2, [0g g L∈ ,1] [0,1]mz∈
 

 
2

1
1/zj

zjj

b
L

λ

∞

=

<∑ . 

uniformly in . [0,1]mz∈

 Assumption 7′:  The tuning parameters  and  satisfy  and h na 1/(2 )r m
hh C n− + +=

/(2 )
n aa C n τα β α− += , where 2 /(2 )r r mτ = +  and  and  are positive, finite constants. hC aC
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 Let 0( , , , , , , , )M M M C L r mα β=H H  be the set of distributions of  that 

satisfy assumptions 1′, 2′, 5′, and 6′ with fixed values of 

( , , , )Y X Z W

M , , 0C α , β , , , , and m . The 

multivariate extension of Theorems 2 and 3 is 

L r

Theorem 5:  Let assumptions 1′-2′, 4, and 5′-7′ hold.  Then for each , [0,1]mz∈

(4.5) { }2 (2 1) /(2 )
[0,1]

ˆlim limsup sup [ ( , ) ( , )] 0
M

HD n H
g x z g x z dx Dn τ β β α− − +

→∞ →∞ ∈
− > =∫P

H
. 

If, in addition,  

(4.6) , *[ (2 1) ]/ 2m rβ α+ − − ≥

then for each  [0,1]mz∈

(4.7) { }2 (2 1) /(2 )
[0,1]

ˆliminf sup [ ( , ) ( , )] 0
M

Hn H
g x z g x z dx Dn τ β β α− − +

→∞ ∈
− > >∫P

H
. 

If , then (4.6) simplifies to 0m = 1 1/α ≥ + .  The rate of convergence in Theorem 5 is 

the same as that in Theorem 3 if 1=  and 0m = .  The theorem shows that increasing  

decreases the rate of convergence of 

m

ĝ  for any fixed .  This is the familiar curse of 

dimensionality of nonparametric estimation.  In addition, assumption 5′ implies that as  

increases,  must also increase to maintain the rate of convergence 

r

r (2 1) /(2 )n τ β β α− − + .  This is a 

form of the curse of dimensionality that is associated with the endogenous explanatory variable 

X . 

5.  Monte Carlo Experiments 

 This section reports the results of Monte Carlo simulations that illustrate the finite-sample 

performance of the estimator that is obtained by solving (2.5).  Samples of  were 

generated from the model 

( , , )Y X W

 , ( )Y g X U= +

where 

 1/ 2 1 6

1
( ) 2 ( 1) sin( )j

j
g x j j xπ

∞
+ −

=
= −∑  

and  is sampled from the distribution whose density is ( , , )U X W
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1

1

( , , ) sin ( 1) sin( )sin( )
2

0.15 sin[ ( 1)]sin(2 )sin( )

UXW j
j

j
j

jf u x w C a u j x j w

d j u j x j w

π π π

π π π

∞

=

∞

=

⎡ ⎤= +⎢ ⎥⎣ ⎦

+ +

∑

∑

 

for .  In this density, 2( , , ) [ 1,1] [0,1]U X W ∈ − ×

  
3 if  1,3,5,...

0 otherwise,j
j ja
−⎧ =⎪= ⎨

⎪⎩

10
jd j−= , and 

 
1

3 3
1

16 j

j

a
C

jπ

−
∞

=

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ . 

The density is cumbersome algebraically, but it is convenient for computations and has a 

conventional shape.  This is illustrated in Figures 1-3, which show graphs of the density of W , 

the density of X  conditional on W , and the density of U  conditional on ( , )X W .  For 

computational purposes, the infinite series were truncated at 100j = .   

 The kernel function used for density estimation is  for |2 2( ) (15 /16)(1 )K x x= − | 1x ≤ . 

The estimates of g  were computed by using the Levenberg-Marquardt method (Engl, Hanke and 

Neubauer 1996, p. 285).  The starting function was obtained by carrying out a cubic quantile 

regression of  on Y X  without controlling for endogeneity. 

 Each experiment consisted of estimating g  at the 99 points 0.01,0.02,...,0.99x = .  The 

experiments were carried out in GAUSS using GAUSS pseudo-random number generators.  

There were 500 Monte Carlo replications in each experiment.  Experiments were carried out 

using sample sizes  and .   200n = 800n =

 The results are summarized in Table 1 and illustrated graphically in Figures 4-5, 

respectively, for  and .  For each sample size, there are two values of the 

bandwidth parameter,  (0.5 and 0.8), and two values of the regularization parameter,  (0.5 

and 1).  For estimation of  the bandwidth  is used in the  direction and  is used in the 

200n = 800n =

h na

YXWf 2h Y h

X  and W  directions, because the standard deviation of Y  is about double those of X  and W .  

The results in Table 1 show that the empirical integrated variance and integrated mean-square 

error (IMSE) decrease as the sample size increases.  The bias does not decrease if  remains 

fixed.  This is not surprising because  is the main source of estimation bias.  Figures 4-5 show 

na

na
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( )g x  (dashed line), the Monte Carlo approximation to ˆ[ ( )]E g x  (solid line), and the estimates, 

ĝ , whose IMSEs are the 25th, 50th, and 75th percentiles of the IMSEs of the 500 Monte Carlo 

replications.  The figures show, not surprisingly, that ĝ  is biased but that its shape is similar to 

that of g . 

6.  Conclusions 

 This paper has presented a nonparametric instrumental variables estimator of a quantile 

regression model, derived the estimator’s rate of mean-square convergence in probability, and 

given conditions under which this rate is the fastest possible in a minimax sense.  The estimator’s 

finite-sample performance has been illustrated by a small set of Monte Carlo experiments.   

 Several topics remain for future research.  The problem of deriving the asymptotic 

distribution of ĝ  appears to be quite difficult.  In contrast to the situation in many other nonlinear 

estimation problems, asymptotic normality cannot be obtained by using a Taylor series 

approximation to linearize the first-order condition for (2.5).  This is because, as was explained in 

Section 1, the ill-posed inverse problem causes the error of the linear approximation to dominate 

other sources of estimation error unless very strong assumptions are made about the distribution 

of .  This problem does not arise with the mean-regression estimator of Hall and 

Horowitz (2005) and Horowitz (2005), because the first-order condition in the mean regression is 

a linear equation for 

( , , )Y X W

ĝ .  Other topics for future research include determining whether the rate of 

convergence of Theorem 2 is optimal when 1 2α< <  (or when *r r<  in Theorem 5) and finding 

a method to choose the regularization parameter  in applications. na

7.  Mathematical Appendix:  Proofs of Theorems 

 This appendix provides proofs of Theorems 1-3.  Theorems 4-5 can be proved by 

following the same steps after conditioning on Z .  

 6.1  Proof of Theorem 1 

 The proof is a modification of the proof of Theorem 2 of Bissantz, Hohage, and Munk 

(2004).  By (2.5), 

(6.1) 
2 22 2ˆ ˆˆ ˆˆ ˆ( ) ( )W n W ng qf a g g qf a g− + ≤ − +T T . 

In addition, 
2ˆ ( ) ( ) ( )ng g O δ− =E T T  and 

2ˆ ( )W W nf f O δ− =E .  Therefore, by assumption 3, 
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2 2 2ˆ ˆˆ ˆ( ) 2 ( ) ( ) 2

( ).

W W

n

g qf g g q f f

O δ

− ≤ − + −

=

E E ET T T W

 

Combining this result with (6.1) gives 

 
2 2 2ˆ ˆˆ ˆ( ) W n n ng qf a g C a gδ− + ≤ +E ET  

for some constant  and all sufficiently large .  Therefore, by assumption 3, C < ∞ n

 2 2ˆlimsup
n

g g
→∞

≤E . 

Note, in addition, that 
2ˆ ˆˆ( ) 0Wg qf− →E T  as .  Moreover, assumptions 1(b) and 2 

imply that  is weakly closed.  Consistency now follows from arguments identical to those used 

to prove Theorem 2 of Bissantz, Hohage, and Munk (2004, p. 1777).  Q.E.D. 

n→∞

T

 6.2  Proof of Theorem 2 

 Assumptions 1-2 and 4-7 hold throughout this section.  Let ,⋅ ⋅  denote the inner product 

in .  Define 2[0,1]L * 1( )g g g gT T T gω −=  and  

(6.2) * 1( )n g g n g gg g a T T a I T*ω−= − + , 

where  is the identity operator.  Observe that by (3.4),  I

(6.3) 1gL ω < . 

Let  and  be Taylor series remainder terms with the properties that r̂ r

(6.4) ˆ ˆ( ) ( )W g ˆg qf T g g r= + − +T  

and 

(6.5) ( ) ( )W gg qf T g g r= + − +T , 

where .  By (3.3), ( )Wqf g= T 2ˆ ˆ( / 2)r L g g≤ − , and 2( / 2)r L g g≤ − . 

 Lemma 6.1:  For any , g∈G
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( ) 22 2 1

21

1

1

ˆ ˆˆ1 ( ) ( )

2 ( ) , ( )

ˆ ˆ2 , 2 , (

ˆ ˆˆ ˆ2 ( ) ( ), 2 ( ) ( ), ( )

g n W W

g n g g n g

W W g n W W g

g n g

L g g g g a g g r qf qf

T g g a a T g g

qf qf a r qf qf T g g)

.g g a g g T g

ω

ω ω

ω

ω

−

−

−

−

− − ≤ − + − + + −

+ − + + −

+ − + + − −

+ − + − −

T T

T T T T g

 

 Proof:  By (6.5), 
2 2 2ˆ ˆˆ ˆ(6.6) ( ) ( ) ( ) ( )

ˆˆ2 , ( ) 2 ( ) ( ), ( )

W W W g

W W g g

g qf g g r qf qf T g g

r qf qf T g g g g T g g

− = − + + − + −

+ + − − + − −

T T T

T T .

 

Also, 
2 2 22

2

ˆ ˆˆ ˆˆ ˆ(6.7) ( ) ( )

ˆ ˆˆ ˆ ˆ2 ( ) ( ), 2 ( ) ,

ˆ2 , 2 .

W W n g n g

n g n

n W W g n g

g qf g qf a a

a g g a g qf

a qf qf a

ω ω

W gω ω

ω ω

− = − + +

− − − −

− − −

T T

T T T  

Moreover, 

*(6.8) , ,

( ),

g g

.g g

g g g g g T

T g g

ω

ω

− = −

= −

 

By (6.4), 

*ˆ ˆ(6.9) , ,

ˆ( ),

ˆ ˆ( ) , , .

g g

g g

W g g

g g g g g T

T g g

g qf r

ω

ω

ω ω

− = −

= −

= − −T

 

By (2.5), 

(6.10) 
2 22 22 2ˆ ˆˆ ˆˆ ˆ( ) ( )W n W ng qf a g g qf a g− + ≤ − +T T . 
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Rearranging and expanding terms in (6.10) gives 

2 22 21 ˆ ˆˆ ˆˆ ˆ(6.11) ( ) ( )

ˆ2 , 2 , .

n W Wg g a g qf g qf g g

g g g g g g

− ⎡ ⎤− ≤ − − − + −⎢ ⎥⎣ ⎦

+ − − −

T T

 

Combining (6.11) with (6.6)-(6.9) gives 
22 21

21

21 1

1

ˆ ˆˆ ˆ ˆ(6.12) 2 , ( )

ˆ ˆ( ) ( ) 2 ( ) ,

ˆ ˆ( ) 2 , 2 , ( )

ˆ ˆˆ ˆ2 ( ) ( ), 2 ( ) ( ), ( ) .

g n W n g

n W W g n g

n g W W g n W W g

g n g

g g r a g qf a g g

a g g r qf qf T g g a

a T g g qf qf a r qf qf T g g

g g a g g T g g

ω ω

ω ω

ω

ω

−

−

− −

−

− ≤ − − + + −

+ − + + − + − +

+ − + − + + − −

+ − + − −

T

T T

T T T T

g

 

The lemma follows by noting that the second term on the right-hand side of (6.12) is non-positive 

and that 2ˆ2 , g gr L gω ω≤ −ˆ g .  Q.E.D. 

 Lemma 6.2:  For any , g∈G

21

22 241

ˆ ˆ(6.13) ( ) ( )

ˆ ˆ4 ( ) ( )
4

n W W

n W

a g g r qf qf

La g g g g qf qf

−

−

− + + −

⎛ ⎞
≤ − + − + −⎜ ⎟⎜ ⎟

⎝ ⎠

T T

T T ,W

 

(6.14) 
221 3 *2 ( ) , ( ) ( ) 1

g n g g n g n g g n gT g g a a T g g a T T a Iω ω ω− −− + + − = + , 

1

2 * 1

2 * 1

ˆ ˆ(6.15) 2 , 2 , ( )

ˆ2 (

( ) ,

W W g n W W g

)g n W W g g n g

n g g n g

qf qf a r qf qf T g g

L g g a qf qf T T a I

La g g T T a I

ω

ω ω

ω

−

−

−

− + + − −

≤ − + − +

+ − +

 

and 
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1

* 1

ˆ ˆˆ ˆ(6.16) 2 ( ) ( ), 2 ( ) ( ), ( )

ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

ˆ ˆ2 ( ) ( ) ( ) ( ) .

g n g

n g g n g g

g

g g a g g T g g

a g g T T a I g g g g

g g g g

ω

ω ω

ω

−

−

− + − −

ˆ⎡ ⎤ ⎡ ⎤≤ − + + − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − −⎣ ⎦ ⎣ ⎦

T T T T

T T T T T T

T T T T

 

 Proof:  Inequality (6.13) follows from (6.5) and the relation 

( )2 2 2 24A B C A C C+ + ≤ + +  

for any functions , A B , and C . 

 To show (6.14), note that 

(6.17) . * 1 * 1( ) ( )n g g n g g g n ga T T a I I T T T a I T− −+ = − + *

*

By (6.2) 

(6.18) * 1( ) ( )n g g g n g gT g g a T T T a I T ω−− = − + . 

It follows from (6.17) and (6.18) that 

(6.19) 2 * 1( ) ( )n g n g g n ga T g g a T T a Iω ω−+ − = + . 

Taking the squares of the norms of both sides of (6.19) and expanding the term on the left-hand 

side yields 

(6.20) 
22 22 4( ) 2 , ( ) ( )n g g n g g n g g n ga T g g a T g g a T T a Iω ω −+ − + − = +* 1ω . 

Then (6.14) follows by dividing both sides of (6.20) by . na

 We now turn to (6.15).  First note that 

ˆ ˆ(6.21) , ( ) , ( )

ˆ , .

W W g W W g n g

W W n g

r qf qf T g g r qf qf T g g a

r qf qf a

ω

ω

+ − − = + − − +

− + −

 

It follows from (6.19) and (6.21) that 

1

* 1

ˆ ˆ(6.22) 2 , 2 , ( )

ˆ2 ,( ) 2 ,

W W g n W W g n g

n W W g g n g g

qf qf a r qf qf T g g a

a r qf qf T T a I r .

ω ω

ω ω

−

−

− + + − − +

= + − + −

 

Then (6.15) follows by applying the Cauchy-Schwarz and triangle inequalities to (6.22). 

 Now we prove (6.16).  Observe that by (6.19) and algebra like that yielding (6.21), 
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1

* 1

ˆ ˆˆ ˆ2 ( ) ( ), 2 ( ) ( ), ( )

ˆ ˆ ˆˆ ˆ2 ( ) ( ),( ) 2 ( ) ( ) ( ) ( ) ,

g n g

n g g n g

g g a g g T g g

a g g T T a I g g g g

ω

ω ω

−

−

− + − −

⎡ ⎤ ⎡ ⎤= − + + − − −⎣ ⎦ ⎣ ⎦

T T T T

T T T T T T ,g

 

which yields (6.16) by the Cauchy-Schwarz and triangle inequalities.  Q.E.D. 

 Lemma 6.3:  The following relations hold uniformly over H ∈H . 

(a) 2 (2 1) /(2 )[ ]g g O n β β α− − +− = , 

(b) 41 (2 1) /[ ]na g g O n (2 )β β α− − −− = + , 

(c) 
23 * 1 (2 1) /(2( ) [n g g n ga T T a I O n ) ]β β αω− − −+ = + , 

(d) 2 * 1 (2 1) /(2( ) [n g g n ga g g T T a I O n ) ]β β αω− − −− + = + , 

(e) * 1 (2 1) /(2ˆ ( ) [n W W g g n g pa qf qf T T a I O n ) ]β β αω− − −− + = + , 

(f) * 1 (2 1) /(2ˆ ( ) ( ) ( ) [ ]n g g n g pa g g T T a I O n )β β αω− − −− + =T T + , 

(g) There are random variables ( 1/ 2) /(2 )[ ]n pO n β β α− − +Δ =  and (1)n poΓ =  such that  

 2ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) n ng g g g g g g⎡ ⎤ ⎡ ⎤− − − ≤ Δ − + Γ −⎣ ⎦ ⎣ ⎦T T T T g , 

(h) (2 1) /(2 )ˆ ˆ( ) ( ) ( ) ( ) [ ]pg g g g O n β β α− − +⎡ ⎤ ⎡ ⎤− − − =⎣ ⎦ ⎣ ⎦T T T T . 

 Proof:  To prove (a), note that by (6.2) and *
g gT gω = , 

*

1

1

1( ) ( ) ( ) ,

( ).

n j j
j nj

j
n j

j nj

g x g x a x T
a

b
a x

a

g gφ φ ω
λ

φ
λ

∞

=

∞

=

− = −
+

= −
+

∑

∑

 

Therefore,  
2

2 2
2

1

(2 1) /(2 )

( )

[ ]

j
n

j nj

b
g g a

a

O n β β α

λ

∞

=

− − +

− =
+

=

∑

,

 

where the second line follows from arguments identical to those used to prove equation (6.4) of 

Hall and Horowitz (2005).  This proves (a).  It follows from (a) that 
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41 (2 1) /[ ]na g g O n (2 )β β α− − −− = +  

whenever 2 1α β< − , thereby proving (b).  

 We now turn to (c).  Define /j g j g jT Tψ φ φ= .  Use * 1( )g g g gT T T gω −=  and the singular 

value decomposition * 1/ 2
g j jT jψ λ φ=  to obtain 

 

* 1

1

*

1

1/ 2

1

1/ 2
1

1( ) ,
( )

1 ,
( )

1 ,
( )

.
( )

g g n g j j g
j j nj

j g j
j j nj

j j j
j j nj

j
j

j j j n

T T a I T g
a

T g
a

g
a

b

a

ω ψ ψ
λ λ

ψ ψ
λ λ

ψ λ φ
λ λ

ψ
λ λ

∞
−

=

∞

=

∞

=

∞

=

+ =
+

=
+

=
+

=
+

∑

∑

∑

∑

 

Therefore, 
22*

2
1

(2 3 1) /

(6.23) ( )
( )

[ ]

j
g g n g

j j j n

n

b
T T a I

a

O a β α α

ω
λ λ

∞

=

− −

+ =
+

=

∑

 

by arguments like those used to prove equation (6.4) of Hall and Horowitz (2005).  Therefore, (c) 

follows from /(2
n aa C n α β α− += ) . 

 To prove (d), note that by (6.23)  

* 1 (2 1) /(2 )

(2 1) /(4 2 )

(6.24) ( ) [ ]

[ ]

n g g n g na T T a I O a

O n

β α α

β α β α

ω− − −

− − − +

+ =

= .

 

Therefore, (d) follows from (6.24) and (a), because 2 1α β< − .  Now by assumptions 2 and 5(b), 

 
2 (2 1 ) /(2 )ˆ [ ]W W pf f O n β α β α− − + +− =  

and 

 
2 (2 1 ) /(2 )ˆ [ ]pO n β α β α− − + +− =T T  
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uniformly over H .  Therefore, (e) and (f) follow from (6.24). 

 We now turn to (g).  By the mean value theorem, 

 

{ }
1

0

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ{ [ ( ), , ] [ ( ), , ]}[ ( ) ( )] ,YXW YXW

g g g g w

f g x x w f g x x w g x g x dx

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

= − −∫

T T T T

 

where g  is between ĝ  and g .  Then by the Cauchy-Schwarz inequality 

 

2

21 1

0 0

1 1 12 2
0 0 0

1 2
0

ˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ{ [ ( ), , ] [ ( ), , ]}[ ( ) ( )]

ˆ ˆ{ [ ( ), , ] [ ( ), , ]} [ ( ) ( )]

ˆ{ [ ( ), , ] [ ( ), , ]}

YXW YXW

YXW YXW

YXW YXW

g g g g

f g x x w f g x x w g x g x dx dw

f g x x w f g x x w dx g x g x dx dw

f g x x w f g x x w d

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

= −

∫ ∫

∫ ∫ ∫

∫

T T T T

1 2
0

ˆ .xdw g g−∫

 

But 

   
1 1 22 (2 1) /(2 )
0 0

ˆ ˆ{ [ ( ), , ] [ ( ), , ]} [ ] (1)YXW YXW p pf g x x w f g x x w dxdw O n g g oβ β α− − +− = +∫ ∫ −  

by assumptions 2 and 5(b), thereby yielding (g).  Finally, (h) can be proved by combining (a) with 

arguments similar to those used to prove (g).  The lemma is now proved because the foregoing 

arguments hold uniformly over .  Q.E.D. H ∈H

 Proof of Theorem 2:  The theorem follows by combining the results of lemmas 6.1-6.3 

with 1gL ω < .  Q.E.D. 

 6.3  Proof of Theorem 3 

It suffices to find a sequence of finite-dimensional models { }ng ∈H  for which  

 2 (2 1) /(2 )liminf 0H n nn
g g Dn β β α− − +

→∞
⎡ ⎤− > >
⎣ ⎦

P . 

To this end, let  denote the integer part of m 1/(2 )n β α− +  and XWf  denote the density of ( , )X W .  

Since 2α ≥ , (2 1) / 2 (3 1/ 2) /( 1)β α β α α+ − ≥ + − + .  Let (2 1) / 2r β α= + − .  Assume that 

( , )XWf x w C≤  for all  and some constant 2( , ) [0,1]x w ∈ C < ∞ .  Let 

( )nY g X U= + , 
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where U is independent of ( , )X W , and ( 0)P U q≤ = .  Let UF  and Uf , respectively, denote the 

distribution function and density of U .  Assume that  and that(0) 0Uf > UF  is twice continuously 

differentiable everywhere with | ( ) |UF u M′′ <  for all  and some u M < ∞ .  Define the operator  

on  by 

Q

2[0,1]L

1

0
( )( ) ( , ) ( )g x x z g zπΠ = ∫ dz , 

for any , where 2[0,1]g L∈

12
0

( , ) (0) ( , ) ( , )U XW XWx z f f x w f z w dπ = ∫ w . 

Let { , : 1,2,...}j j jλ φ =  denote the orthonormal eigenvalues and eigenvectors of Π  ordered so 

that 1 2 ... 0λ λ≥ ≥ > .  Assume that jjαλ  is bounded away from 0 and 1 for all j .  Set  

( ) ( )n j
j m

g x j βθ φ
∞

−

=

= ∑ x  

for some finite, constant 0θ > .  Then for any 2[0,1]h L∈ , 

1

0
( )( ) [ ( ) ( )] ( , )U n XWh w F h x g x f x w dx= −∫T� , 

and the Fréchet derivative of T  at ng  is 

1

0
( )( ) (0) ( , )[ ( ) ( )]

ng U XW nT h w f f x w h x g x dx= −∫ . 

Assumption 6 is satisfied with  whenever L MC= 0θ >  is sufficiently small. 

 Now let θ̂  be an estimator of θ .  Then  

ˆˆ ( ) ( )j
j m

g x j βθ φ
∞

−

=

≡ ∑ x . 

is an estimator of ( )ng x .  Moreover, 

(6.25) 2 2ˆˆ ( )n ng g Rθ θ− = − , 

where 2
n j m

R j β∞ −
=

=∑ .  Note that  is bounded away from 0 and 1 as .  

In addition, 

(2 1) /(2 )
nn β β α− + R n→∞

Wf  is estimated by 

1ˆ ˆ( ) ( )( )wf w q g w−= T . 

Define /j g j g jT Tψ φ φ= .  Then a Taylor series approximation and singular value expansion give  
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1 2

1 1/ 2 2 (2 1) /(

ˆ ˆ ˆ( ) ( ) ( ) ( )( ) ( ) [ ]

ˆ ˆ( ) ( ) ( ) [

W W g j
j m

j j
j m

f w f w q j T w O n

q j w O n

β β

β β

θ θ φ θ θ

θ θ λ ψ θ θ

∞
− − − − 2

=

∞
− − − − 2

=

− = − + −

= − + −

∑

∑

(2 1) /( )

) ].

β α

β α

+

+

. 

Now, 
2

(2 1) /(2 ) 1/ 2
j j

j m
n jβ α β α βλ ψ

∞
+ − + −

=
∑  

is bounded away from 0 and  as .  Therefore, there is a finite constant  such that ∞ n→∞ 0Cθ >

(6.26) 
22 (2 1) /(2 ) ˆˆ( ) W WC n f fβ α β α

θθ θ + − +− ≥ − . 

Combining (6.25) and (6.26) shows that there is a finite constant  such that 0gC >

(6.27) 
22(2 1) /(2 ) (2 1) /(2 ) ˆˆ n g W Wn g g C n fβ β α β α β α− + + − +− ≥ − f . 

The theorem now follows from (6.27) and the observation that with (2 1) / 2r β α= + − , 

(2 1) /(2 )[pO n ]β α β α+ − +  is the fastest possible minimax rate of convergence of 
2

Ŵ Wf f− .  Q.E.D. 
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YXWf
( , , )Y X W K

FOOTNOTES 
 
1  The results of this paper hold even if  or its derivatives are discontinuous at one or more 
boundaries of the support of  provided that the kernel function  is replaced by a 
boundary kernel. 
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Table 1. Results of Monte Carlo Experiments

n an h Bias2 Variance MISE

200 0.5 0.5 0.0226 0.0199 0.0425
0.5 0.8 0.0795 0.0220 0.1015
1.0 0.5 0.0146 0.0195 0.0341
1.0 0.8 0.0247 0.0203 0.0450

800 0.5 0.5 0.0233 0.0048 0.0282
0.5 0.8 0.0816 0.0054 0.0870
1.0 0.5 0.0151 0.0047 0.0199
1.0 0.8 0.0258 0.0050 0.0308

Note: Bias2, Variance, and MISE, respectively, are Monte Carlo approxi-
mations to

∫
1

0
(E[ĝ(x)] − g(x))2dx,

∫
1

0
(ĝ(x) − E[ĝ(x)])2dx, and

∫
1

0
(ĝ(x) −

g(x))2dx.
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Figure 1: The Density of W
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Figure 2: The Density of X Conditional on W
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Figure 3: The Density of U Conditional on X and W
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Figure 4: Monte Carlo Results for n = 200
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Figure 5: Monte Carlo Results for n = 800
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