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Abstract: This paper focuses on the importance of decoupling recurrent supply risk and disruption risk when planning appropri-
ate mitigation strategies. We show that bundling the two uncertainties leads a manager to underutilize a reliable source while over
utilizing a cheaper but less reliable supplier. As in Dada et al. (working paper, University of Illinois, Champaign, IL, 2003), we
show that increasing quantity from a cheaper but less reliable source is an effective risk mitigation strategy if most of the supply risk
growth comes from an increase in recurrent uncertainty. In contrast, we show that a firm should order more from a reliable source
and less from a cheaper but less reliable source if most of the supply risk growth comes from an increase in disruption probability.
© 2007 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2007
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1. INTRODUCTION

Chopra and Sodhi [5] discuss several supply risks that a

AQ1

manager must account for when planning suitable mitiga-
tion strategies. In this paper, we focus on two of the risks
categorized by them: disruptions and delays. Delays can be
viewed as recurrent risks, whereas disruptions correspond to
the interruption of supply. Our goal is to highlight the impor-
tance of recognizing the two risks as being distinct. We show
that bundling the two risks can lead to an overutilization of
cheaper suppliers and an underutilization of reliable suppli-
ers. We also show that the mitigation strategies adopted are
different depending upon whether most of the supply risk is
recurrent or results from disruption.

A classic example of disruption is the shortage of flu vac-
cine in Fall 2004 that occurred in the United States after 46
million doses produced by Chiron, one of only two suppliers,
were condemned because of bacterial contamination [13].
This shortage led to rationing in most states and severe price
gouging in some cases. The lack of a reliable backup source
of supply severely affected the nation’s vaccine supply. In

Correspondence to: G. Reinhardt (greinhar@condor.depaul.edu)

contrast, Canada had no such problem. In spite of a much
smaller population base, Canada relies on more suppliers,
which makes it less vulnerable to disruption from any one
supplier. Another example is the March 2000 fire at the
Philips microchip plant in Albuquerque, NM [20]. That plant
supplied chips to both Nokia and Ericsson. Nokia learned
of the impending chip shortage within just 3 days and took
advantage of their multitiered supplier strategy to obtain chips
from other sources. Ericsson, however, could not avoid a pro-
duction shutdown because it was sourcing from only that
plant. As a result, the company suffered $ US400 million in
lost sales.

In both examples, one party benefited from mitigating dis-
ruption risk by having additional suppliers. In this paper, we
offer a possible explanation for the different actions taken
by the two parties. We show that bundling of disruption and
recurrent risk results in situations where the reliable supplier
is not used when it should have been. In general, bundling dis-
ruption and recurrent supply uncertainty results in an overuti-
lization of the cheaper supplier and an underutilization of the
reliable supplier.

We also show that the source of supply risk affects the
relative use of cheaper suppliers and more reliable suppliers.

© 2007 Wiley Periodicals, Inc.
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Similar to the conclusions of Dada et al. [6], we show that
increased ordering from cheaper suppliers is an effective mit-
igation strategy if an increase in supply risk results from an
increase in recurrent supply uncertainty. In contrast, we show
that increased use of the reliable supplier and decreased use
of the cheaper less reliable supplier is a better mitigation
strategy if an increase in supply uncertainty results from an
increase in disruption risk.

Although our results are derived in a single period setting,
we illustrate the difference between bundling and decoupling
of recurrent and disruption risks by considering the supply
received by a manager placing and receiving orders over 20
periods as shown in Table 1. The manager orders 100 unitsT1
each period and receives supply as shown in the first column.
We model recurrent supply uncertainty by assuming that the
delivered quantity is subject to variability and that the lead
time is fixed.

If the manager views the fluctuation in supply quantity
as coming from a single source, she will use the entire
column of supply quantities to estimate uncertainty. Using
the supply data in the first column, she estimates supply
uncertainty to be represented by an average delivery of 86
units with a standard deviation of 38.60 when orders for
100 units are placed. In this case, the manager has bun-
dled all uncertainty. A closer look at the data reveals a few
days with zero supply. If we interpret zero supply to be a
disruption and all other fluctuation to be recurrent supply
uncertainty, the manager should interpret supply uncertainty

Table 1. Delivery log.

Period Delivered amount Sorted by size

1 83 0
2 94 0
3 108 0
4 0 81
5 114 83
6 89 87
7 0 89
8 92 92
9 109 93
10 118 94
11 81 102
12 116 103
13 0 108
14 87 109
15 103 109
16 109 109
17 93 111
18 102 114
19 111 116
20 109 118

Mean 86 101
Standard deviation 38.80 11.87

differently. Considering the same data in the “Sorted by size”
column reveals that disruption occurs in 3 of 20 instances
and supply quantity fluctuates for other reasons in 17 of 20
instances. Thus, the manager should estimate supply uncer-
tainty in two parts: a disruption probability of 15% and, in
case of no disruption, a supply distribution with a mean of
101 units with a standard deviation of 11.87 units (when
orders for 100 units are placed). In this case the supply
manager correctly decouples disruption and recurrent supply
uncertainty.

There has been a good deal of conceptual work regarding
supply chain risks in general, and disruption uncertainty in
particular. Mitroff and Alpasan [11] provide strategic tools
to help identify stress causes and their impact on a firm’s
preparedness towards disruptive events. Chapman et al. [3]
discuss supply chain vulnerabilities by enumerating sources
of disruptions and analyzing the impacts of each. Zsidisin
et al. [25] observe how seven supply chain champions mea-
sure and manage risk sources. At a more technical level
Qi [17], provides centralized and decentralized coordination
models and tests a firm’s operating plan in a one-supplier-
one-retailer setting in the presence of disruption risk. Gurnani
and Shi [9] introduce a bargaining model for the initial
relationship between a buyer and a supplier with contrast-
ing beliefs about the supplier’s reliability and compute the
optimal contract structure under full and asymmetric infor-
mation settings. Kleindorfer and Saad [10] chart a conceptual
framework that trades off risk mitigating investments against
potential losses caused by supply disruption. Gaonkar and
Viswanadham [7] also build an empirical framework that
addresses the question of choosing a set of suppliers that
minimizes loss caused by deviation, disruption, and dis-
aster risks. Christopher and Lee [4] draw upon additional
disruption instances and also illustrate that lack of confi-
dence and panic lead stakeholders to make irrational supply
chain decisions. Sheffi [19] revisits various supply chain
risk reduction mechanisms (visibility, multiple sourcing, col-
laboration, pooling, and postponement) and addresses the
critical issue of how a firm should apply them in the pres-
ence of a terrorism threat, while maintaining operational
effectiveness.

Although our work can be related to the work on ran-
dom yields as in Yano and Lee [24], the value of decou-
pling recurrent from disruption risks is an issue that has not
been considered in the random yields literature. The fact that
dual sourcing improves performance is demonstrated in sev-
eral settings, including when there is no supply uncertainty
(Bulinskaya [2], Whittmore and Saunders [23], Moinzadeh
and Nahmias [12]) and when there is supply or demand
uncertainty (Anupindi and Akella [1], Gerchak and Parlar
[8], Parlar and Wang [16], Ramasesh et al. [18]). There has
been recent work that focuses on deriving optimal multi-
period ordering policies where it is assumed that the current

Naval Research Logistics DOI 10.1002/nav
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state of the supply process is known (either ‘up’ or ‘down’).
This includes Weiss and Rosenthal [22] who integrate dis-
ruption uncertainty in EOQ inventory systems by developing
optimal inventory policies in anticipation of a random length
interruption in the supply or demand process, but where the
interruption starting time is known in advance. Parlar [14] and
Parlar and Perry [15] invoke renewal theory to model how the
multiperiod (q, r) replenishment policies can be extended to
a setting that includes supply interruptions of random lengths
of time. They derive average cost and reordering policies for
when the supplier is available and not available, assuming
that the distributions of the amount of time for both instances
are known.

Our paper is closely linked to the work of Tomlin [21].
As in our model, Tomlin [21] considers two suppliers: one
who is unreliable and another who is reliable but more expen-
sive. Disruption for the unreliable supplier is modeled with
two components: the up/down state (known before ordering
decisions are made) and the duration of the supply interrup-
tion. Tomlin [21] then identifies conditions where different
mitigation strategies are effective. He shows that supplier
diversification is preferred to inventory mitigation if disrup-
tions are rare but long, whereas inventory is preferred if
disruptions are frequent but short.

We develop a single period model in which one supplier
is subject to both recurrent and disruption uncertainties and
the other is perfectly reliable. In contrast to Tomlin’s models,
in our model both recurrent and disruption uncertainties are
unresolved when the manager places an order with the first
supplier. We also require the manager to reserve a maximum
order size with the reliable supplier at a given reservation
price. When uncertainty is resolved, the manager can exer-
cise up to the reserved amount from the reliable supplier if
demand cannot be met from the first supplier’s delivery (due
to recurrent or disruption uncertainty).

Our paper is also closely linked to the work of Dada et al.
[6]. They consider the problem of a newsvendor supplied
by multiple suppliers with varying cost and reliability. They
study properties of the optimal solution and show that cost
generally takes priority over reliability when selecting sup-
pliers. While we briefly discuss the selection of suppliers,
our paper is much more focused on the relative use of the
cheaper supplier and the reliable supplier once both have
been selected. Our model expands on the insights of Dada
et al. [6] by separately considering whether the supply risk
is primarily recurrent or because of disruption. We show that
increased use of the cheaper supplier is optimal if the growth
in supply uncertainty is primarily from an increase in recur-
rent supply uncertainty. In contrast, we show that reliability
takes priority over cost and it is optimal to increase the use
of the reliable supplier and decrease the use of the cheaper
supplier if most of the growth in supply uncertainty results
from disruption.

2. ERRORS FROM BUNDLING WITH TWO
SUPPLIERS: ONE PRONE TO DISRUPTION, ONE

PERFECTLY RELIABLE

Consider a single period problem where the buyer faces
a fixed demand D over the coming period. The buyer has
two supply options: one cheaper but prone to disruption and
recurrent supply risk (referred to as the first supplier) and the
other perfectly reliable and responsive but more expensive
(referred to as the reliable supplier). The first supplier may
have supply disrupted with probability P , in which case the
buyer receives a supply of 0. If there is no disruption (with
probability 1 −P), the amount delivered is a symmetric ran-
dom variable, X, with density function f (X) having a mean
of S (the quantity ordered) and standard deviation σX. Note
that in our model, supply may exceed the order quantity. Such
a situation may arise in a context where yields are random
(such as the flu vaccine or semiconductors) and the contracts
are on production starts. We also note that this assumption
simplifies the analysis and allows us to draw useful man-
agerial insights. Each unsold unit at the end of the period is
charged an overage cost of Co and each unit of unmet demand
is charged a shortage cost of Cu. We restrict attention to the
case where Cu > Co.

The reliable supplier has no disruption or recurrent sup-
ply uncertainty, that is, the supplier is able to deliver exactly
the quantity ordered. Responsiveness of the reliable supplier
allows the manager to place her order after observing the
response of the first supplier and yet receive supply in time to
meet demand. This reliability and responsiveness, however,
comes at a price. The reliable supplier charges a premium
and requires the manager to reserve I units (at a unit cost
of $h per unit) at the beginning of the period before know-
ing the outcome of supply from the first supplier. Once the
outcome from the first supplier is known, the manager can
order any quantity up to the I units reserved at an exercise
price of $e per unit. If e + h ≥ Cu, the manager does not use
the reliable supplier because under-stocking costs less than
getting product from the reliable supplier. Thus, we assume
that e+h < Cu. If h ≥ Co, the manager does not reserve any
capacity from the reliable supplier in the absence of disrup-
tion, preferring to over-order from the cheaper supplier. Thus,
we assume that h < Co. Also, it is reasonable to assume that
the total cost from the reliable supplier e+h exceeds the cost
of over-stocking Co of purchases from the cheaper supplier,
that is, e + h > Co. The manager’s goal is to minimize total
expected costs.

The sequence of events is as follows. The manager orders
S units from the first supplier and reserves I units from the
reliable supplier. Random supply X then arrives from the
first supplier. If X < D, the inventory manager exercises
the option to order min{D − X, I } units from the reliable
supplier. If X < D − I the manager orders I units and there

Naval Research Logistics DOI 10.1002/nav
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4 Naval Research Logistics, Vol. 00 (2007)

is an under-stock of D − I − X. If D − I ≤ X ≤ D, the
manager orders D − X and there is no over- or under-stock.
If D ≤ X, the inventory manager exercises nothing from the
reliable supplier and over stocks by X − D.

To understand the manager’s actions when uncertainties
are bundled, we first analyze the case where the delivery quan-
tity from the first supplier only has recurrent uncertainty (no
disruption) represented by a random supply w with cumula-
tive distribution function G(w) with a mean S (the quantity
ordered) and standard deviation σw. In the absence of disrup-
tion, the expected costs from the perfectly reliable supplier
are given by

E(T Creliable) = hI + e

∫ D

0
min(I , D − w)dG(w).

The expected over- and under-stocking are all attributed to
the first supplier and are given by

E(T Cover+under)

= Cu

∫ D−I

u
(D − I − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w).

Given the variable w with mean S, standard deviation σw,
and cumulative distribution G(w), define the standardized
variable z to be

z = w − S

σw

.

z has the cumulative distribution GS(z) with mean 0 and
standard deviation 1. Given a value R of w, define

(R)s = R − S

σw

.

We may denote (R)s by Rs when there is no ambiguity.
Standardized loss function is defined as

�(w, (R)s) =
∫ ∞

Rs

(1 − GS(z))dz

This yields an expected total cost of (see Appendix)

E(T C(S, I )) = E(T Creliable) + E(T Cover+under)

= (h+ e −Cu)I +Cu(D −S)+ (Cu − e)σw�(w, (D − I )s)

+ (e + Co)σw�(w, (D)s) (1)

The optimal actions by the manager when there is only
recurrent uncertainty are obtained in Proposition 1.

PROPOSITION 1: In the absence of disruption, the order
quantity S* from the first supplier is given by

S∗ = D − σwG−1
S

(
Co − h

Co + e

)
(2)

and the reservation quantity I ∗ with the reliable supplier is
given by

I ∗ = Max

(
0, σw

(
G−1

S

(
Co − h

Co + e

)
− G−1

S

(
h

Cu − e

)))
.

(3)

PROOF: See Appendix. �

The above analysis allows us to understand the manager’s
actions when she bundles the two risks. Recall that the first
supplier has a disruption probability of P resulting in a sup-
ply of 0 and a recurrent uncertainty represented by a supply
X with a cumulative distribution function F(X) with a mean
of S (the quantity ordered) and a standard deviation σx . Thus,
if an order of S is placed with the first supplier, the quantity
delivered by the first supplier will equal 0 with probability
P and, with probability 1 − P , will equal X, which has a
cumulative distribution of F(X).

When the manager bundles both sources of uncertainty, let
S∗

1 be the optimal order quantity with the first supplier, and
I ∗

1 the reservation quantity with the reliable supplier. A man-
ager who bundles the uncertainties expects a random supply
Y given an order of S. The expected value of Y is given by

E(Y ) = (1 − P)E(X) = (1 − P)S

and its variance is given by

Var(Y ) = P(1 − P)[E(X)]2 + (1 − P)Var(X)

= P(1 − P)S2 + (1 − P)σ 2
x . (4)

S∗
1 and I ∗

1 are obtained by replacing w by Y and substituting
S∗ = (1 − P)S∗

1 , I ∗ = I ∗
1 , (1 − P)S = E(Y ), and σw = σY

in Eqs. (2) and (3). On bundling, the order quantity S∗
1 with

the first supplier is given by

(1 − P)S∗
1 = D − σY F−1

s

(
Co − h

Co + e

)
(5)

and the reservation quantity I ∗
1 with the reliable supplier is

given by

I ∗
1 = Max

{
0, σY

(
F−1

s

(
Co − h

Co + e

)
− F−1

s

(
h

Cu − e

))}

(6)

The next step is to evaluate the manager’s actions if she
decouples the two uncertainties when making her decision.
The total cost in this case can again be broken up into two
parts: one from contracting with the reliable supplier and one
from purchasing from the first supplier. Observe that it is
never optimal to reserve more than D units with the reliable

Naval Research Logistics DOI 10.1002/nav
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Chopra, Reinhardt, and Mohan: Decoupling Recurrent Supply and Disruption Risks 5

supplier, that is, D ≥ I . The expected cost for the reliable
supplier consists of three components: the cost of reserving
quantity I , the cost of purchasing I units and under-stocking
by D−I units in case of a disruption, and the cost of purchas-
ing the minimum of the reserved quantity I and the shortage
D − x in case the supply x is less than the demand D. The
expected cost for the reliable supplier is given by

E(T Creliable) = hI + P(eI + Cu(D − I ))

+ (1 − P)e

∫ D

0
min(I , D − x)dF (x)

The expected over- and under-stocking costs (when supply
arrives but leads to over or under stocking) is given by

E(T Cover+under) = (1 − P)

(
Cu

∫ D−I

0
(D − I − x)dF (x)

+Co

∫ ∞

D

(x − D)dF(x)

)

The expected total cost on decoupling the two uncertainties
is thus given by

E(T C(S, I )) = E(T Creliable) + E(T Cover+under)

= hI + P(eI + Cu(D − I ))

+ (1 − P)e

∫ D

0
min(I , D − x)dF (x)

+ (1 − P)

(
Cu

∫ D−I

0
(D − I − x)dF (w)

+ Co

∫ ∞

D

(x − D)dF(x)

)

We thus have

E(T C(S, I )) = hI + P(eI + Cu(D − I ))

+ (1 − P)

(∫ D−I

0
(eI + Cu(D − I − x))dF (x)

)

+ (1−P)

(∫ D

D−I

e(D−x)dF (x)+Co

∫ ∞

D

(x −D)dF(x)

)
.

(7)

Proposition 2 identifies the manager’s actions when the
uncertainties are decoupled.

PROPOSITION 2: When the uncertainties are decoupled,
the optimal order quantity with the first supplier S∗

2 is given
by

S∗
2 = D − σxF

−1
S

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)
,

(8)

and the optimal reservation quantity from the reliable supplier
I ∗

2 is given by

I ∗
2 = max

(
0, σx

(
F−1

S

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)

− F−1
S

(
h − P(Cu − e)

(1 − P)(Cu − e)

)))
. (9)

PROOF: See Appendix. �

Having identified the manager’s actions when she bun-
dles and decouples the risks, we first show that there are
instances where bundling the two uncertainties results in the
reliable supplier not being used, whereas decoupling the two
uncertainties results in the reliable supplier being used.

PROPOSITION 3: For a positive probability P of disrup-
tion for the first supplier, there are values of Co, Cu, h, and e,
such that bundling the two uncertainties results in the reliable
supplier not being used, i.e., I ∗

1 = 0, whereas decoupling the
two uncertainties results in the reliable supplier being used,
i.e., I ∗

2 > 0.

PROOF: From Eq. (6) observe that I ∗
1 = 0 if

Co − h

Co + e
≤ h

Cu − e
or h ≥

(
1 − Cu

Cu + Co

)
(Cu − e)

(10)

In particular,

e = 0 and h = Co (11)

result in I ∗
1 = 0.

To obtain I ∗
2 , we substitute e = 0 into Eq. (9) to obtain

I ∗
2 = max

(
0, σx

(
F−1

S

(
(1 − P)(Co) − h + PCu

(1 − P)(Co)

)

− F−1
S

(
h − P(Cu)

(1 − P)(Cu)

)))

Substitute for h from (11) to obtain

(1 − P)(Co) − h + PCu

(1 − P)(Co)
− h − P (Cu)

(1 − P)(Cu)

= PC2
u − C2

o

(1 − P)Co(Co + Cu)
> 0 for 1 > P > 0.

This implies that I ∗
1 > 0 using Eq. (9). Thus, there are sit-

uations where bundling the two uncertainties results in no
use of the reliable supplier (I ∗

1 = 0) whereas decoupling the
uncertainties results in a positive amount reserved from the
reliable supplier (I ∗

2 > 0). �
Naval Research Logistics DOI 10.1002/nav
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6 Naval Research Logistics, Vol. 00 (2007)

Proposition 3 is most closely related to the results of Dada
et al. [6]. We show that bundling of risks leads to instances
where the reliable supplier is not selected even though it
should have been. This relates to the examples of the flu
vaccine and Ericsson discussed at the beginning of the paper.
Bundling of disruption and recurrent risk is a possible expla-
nation for going with fewer suppliers than may be appropriate
in each case.

Next we show in Proposition 4 that when uncertainties are
bundled, the quantity ordered from the first supplier increases
with the probability of disruption.

PROPOSITION 4: When the uncertainties are bundled, the
quantity ordered from the first supplier S∗

1 is increasing in the
disruption probability P for 0 < P < 1.

PROOF: From Eq. (5), we observe that (1 − P)S∗
1 =

D − σY F−1
S

(
Co−h

Co+e

)
. Given that h + e > Co, we obtain

Co−h

Co+e
< 1

2 or, equivalently, F−1
S

(
Co−h

Co+e

)
< 0. Thus, it fol-

lows that S∗
1 is increasing in the disruption probability P for

0 < P < 1. �

In contrast, when the uncertainties are decoupled, Propo-
sition 5 shows that the quantity ordered from the first
supplier decreases as the probability of disruption grows.
Thus, bundling of recurrent and disruption risk leads to an
over-utilization of the first supplier.

PROPOSITION 5: When the uncertainties are decoupled,
the quantity ordered from the first supplier S∗

2 decreases as
the probability of disruption P increases.

PROOF: From Eq. (8) we obtain

S∗
2 = D − σXF−1

S

(
1 − h + e − PCu

(1 − P)(Co + e)

)

To show that S∗
2 decreases with an increase in P , we need to

show that F−1
S

(
1 − h+e−PCu

(1−P)(Co+e)

)
increases with an increase in

P . This is equivalent to showing that
(

h+e−PCu
(1−P)(Co+e)

)
decreases

with an increase in P , or d
dp

(
h+e−PCu

(1−P)(Co+e)

)
< 0.

This derivative is given by

d

dp

(
h + e − PCu

(1 − P)(Co + e)

)

= (Co + e)((h + e − PCu) − Cu(1 − P))

[(1 − P)(Co + e)]2

= (Co + e)(h + e − Cu)

[(1 − P)(Co + e)]2
.

Observe that the derivative is negative whenever h + e <

Cu, a condition we have already assumed from Eq. (3). The
result thus follows. �

Proposition 5 makes an important point. Even though the
reliable supplier is most useful in the event of a disruption, the
reliable supplier also serves the role of mitigating recurrent
supply uncertainty. Thus, as the supply uncertainty increases
because of an increase in disruption probability, it is best for
the manager to mitigate more of the recurrent supply risk
using the reliable supplier and use less of the first supplier.

PROPOSITION 6: When the uncertainties are decoupled,
for low disruption probability P and h+e ≥ Co, the quantity
ordered from the first supplier S∗

2 increases as the recurrent
supply uncertainty σx increases.

PROOF: From Eq. (8) recall that

S∗
2 = D − σXF−1

S

(
1 − h + e − PCu

(1 − P)(Co + e)

)

Using the fact that h + e ≥ Co, we can show that for low
values of P ,

(
1 − h + e − PCu

(1 − P)(Co + e)

)
<

1

2

Given that x has been assumed to be symmetric about the
mean, we thus obtain

F−1
S

(
1 − h + e − PCu

(1 − P)(Co + e)

)
< 0.

The result thus follows. �

Comparing Propositions 5 and 6, we are able to expand
on the insights of Dada et al. [6]. They showed that cost
takes precedence over reliability when selecting suppliers.
Our results focus on the relative use of the two suppliers once
both have been selected. We have shown that the impact of
cost and reliability on the relative use of the two suppliers is
driven by the source of unreliability. By Proposition 6, if the
growth in supply uncertainty is driven by a growth in recur-
rent uncertainty, using more of the low cost (but unreliable)
supplier is a good mitigation strategy. In contrast, if growth in
supply uncertainty is driven by a growth in disruption prob-
ability, Proposition 5 shows that using more of the reliable
supplier and less of the cheaper but unreliable supplier is opti-
mal. Propositions 5 also agrees with the results from Tomlin
[21] for a reliable supplier that has instantaneous and infinite
flexibility: that supplier is used more as the first supplier’s
uptime (1 − P in our model) goes down.

Numerical experiments confirm all the theoretical conclu-
sions drawn in this section. In all numerical experiments we
use D = 100, Co = 10, Cu = 15, e = 8, and h = 2.8 and
assume the supply distribution to be normal. Simulations also

Naval Research Logistics DOI 10.1002/nav
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Chopra, Reinhardt, and Mohan: Decoupling Recurrent Supply and Disruption Risks 7

Figure 1. Optimal excess order from first supplier on bundling and decoupling.

support the results of Propositions 3 through 6 under a random
demand that follows a uniform or a normal distribution.

Figure 1 shows the change in S∗
1 − 100, the excess orderF1

size from the first (cheaper but less reliable) supplier when
risks are bundled, and S∗

2 −100, the excess order size from the
first supplier when risks are decoupled, as a function of the
disruption probability P . In this chart the supply distribution
has σ = 15. Observe that when risks are bundled, increas-
ing the disruption probability increases the excess order size
(S∗

1 − 100) from the first supplier. In contrast, when risks are
decoupled, increasing the disruption probability decreases
the excess order size (S∗

2 − 100) from the first supplier.
Figure 2 looks at the case where risks are decoupled andF2

shows the impact of changing the recurrent uncertainty σ and
the disruption probability P on S∗

2 −100, the excess order size
from the first supplier. For the upper chart we fix the recur-
rent uncertainty σ = 15 and vary the disruption probability
P from 0.00 to 0.16. In the lower chart we fix the disruption
probability P = 0.04 and vary the recurrent uncertainty from
σ = 15 to σ = 31. Figure 2 shows that as the probability
of disruption increases, the excess quantity ordered from the
first supplier (S∗

2 − 100) should be decreased. In contrast, as
the recurrent supply uncertainty increases the excess quantity
ordered from the first supplier (S∗

2 −100) should be increased.
Figure 3 looks at the case where risks are decoupled andF3

shows the impact of changing the recurrent uncertainty σ and
Figure 2. Change in optimal excess order from first supplier as
disruption probability and recurrent uncertainty grows.

Naval Research Logistics DOI 10.1002/nav
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8 Naval Research Logistics, Vol. 00 (2007)

Figure 3. Change in optimal reservation quantity from reliable
supplier as disruption probability and recurrent uncertainty grows.

the disruption probability P on I ∗
2 , the reservation quantity

from the reliable supplier. For the upper chart we fix the recur-
rent uncertainty σ = 15 and vary the disruption probability
P from 0.00 to 0.16. In the lower chart we fix the disrup-
tion probability P = 0.04 and vary the recurrent uncertainty
from σ = 15 to σ = 31. Figure 3 shows that the reservation
quantity with the reliable supplier increases with both the
disruption probability and the recurrent uncertainty. The dis-
ruption probability, however, seems to have a much greater
impact on the reservation quantity than the recurrent uncer-
tainty. As the disruption probability grows from 0 to 0.16,
the reservation quantity grows from 0 to 6.39. In contrast, as
the recurrent uncertainty grows from 0 to 31, the reservation
quantity only grows from 0 to 2.80.

To compare the relative use of the first supplier and the
reliable supplier to mitigate supply risk, consider the ratio
(S∗

2 − D)/I ∗
2 . For the data used in Figs. 2 and 3, as the

disruption probability increases from 0.02 to 0.16 the ratio
(S∗

2 −D)/I ∗
2 decreases from 5.74 to 0.37. Thus, as the disrup-

tion probability increases, more of the supply risk is mitigated
by the reliable supplier. In contrast, the ratio (S∗

2−D)/I ∗
2 stays

constant at 2.53 as the standard deviation of recurrent supply
increases from 15 to 31. The first supplier continues to play
the dominant role to mitigate recurrent supply uncertainty.

3. CONCLUSION

Dada et al. [6] have shown that cost dominates reliability
when selecting suppliers. In this paper, we expand on their
insights by focusing on the relative use of the two suppliers
once both have been selected. We show the importance of
recognizing and decoupling disruption and recurrent supply
risk when planning mitigation strategies in a supply chain.
The managerial implications of our results are as follows:

1. Bundling of disruption and recurrent supply uncer-
tainty results in an over (under) utilization of the low
cost (reliable) supplier. The extent of over (under)
utilization increases as the probability of disruption
grows.

2. Growth in supply risk from increased disruption
probability is best mitigated by increased use of
the reliable (though more expensive) supplier and
decreased use of the cheaper but less reliable sup-
plier. Growth in supply risk from increased recurrent
uncertainty, however, is better served by increased
use of the cheaper, though less reliable, supplier.

APPENDIX

Derivation of Equation (1): The Expected Total Cost in
the Two Supplier Case

E(T C(S, I )) = E(T Creliable) + E(T Cover+under) = hI + e

∫ D

0
min(I , D − w)dG(w) + Cu

∫ D−I

0
(D − I − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

= hI + eI

∫ D−I

0
dG(w) + e

∫ D

D−I

(D − w)dG(w) + Cu

∫ D−I

0
(D − I − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

= hI + (e − Cu)I

∫ D−I

0
dG(w) + e

∫ D

D−I

(D − w)dG(w) + Cu

∫ D−I

0
(D − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

= hI + (e − Cu)I

∫ D−I

0
dG(w) + e

∫ D

0
(D − w)dG(w) − e

∫ D−I

0
(D − w)dG(w) + Cu

∫ D−I

0
(D − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

= hI + (e − Cu)I

∫ D−I

0
dG(w) + e

∫ D

0
(D − w)dG(w) + (e − Cu)

∫ D−I

0
(w − D)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

= hI + (e − Cu)

∫ D−I

0
(w − (D − I ))dG(w) + e

∫ D

0
(D − w)dG(w) + Co

∫ ∞

D

(w − D)dG(w)

Naval Research Logistics DOI 10.1002/nav
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Chopra, Reinhardt, and Mohan: Decoupling Recurrent Supply and Disruption Risks 9

= hI+(e−Cu)

∫ ∞

0
(w − (D − I ))dG(w)+(Cu−e)

∫ ∞

D−I

(w − (D − I ))dG(w)+e

∫ ∞

0
(D − w)dG(w)−e

∫ ∞

D

(D − w)dG(w)+Co

∫ ∞

D

(w − D)dG(w)

= hI + (e − Cu)I

∫ ∞

0
dG(w) − e

∫ ∞

0
(D − w)dG(w) + Cu

∫ ∞

0
(D − w)dG(w) + (Cu − e)

∫ ∞

D−I

(w − (D − I ))dG(w)

+ e

∫ ∞

0
(D − w)dG(w) + (e + Co)

∫ ∞

D

(w − D)dG(w)

= (h + e − Cu)I + Cu(D − S) + (Cu − e)

∫ ∞

D−I

(w − (D − I ))dG(w) + (e + Co)

∫ ∞

D

(w − D)dG(w)

Observe that

∫ ∞

D

(w − D)dG(w) = σw�(w, Ds) and

∫ ∞

D−I

(w − (D − I ))dG(w) = σw�(w, (D − I )s )

We thus have

E(T C(S, I )) = (h + e − Cu)I +Cu(D − S)+ (Cu − e)σw�(w, (D − I )s )

+ (e + Co)σw�(w, Ds).

PROOF OF PROPOSITION 1. The proof is provided in the following
three steps. Recall that S is the expected supply (which is also the quantity
ordered) and I is the quantity reserved with the reliable supplier.

(a) The loss function is convex in S.

The standardized loss function, �(w, Ds) = ∫ ∞
Ds (1 − Gs(z))dz, where

z = (w−S)
σw

and Ds = (D−S)
σw

, is a convex function of S.

PROOF: Observe that

∂

∂S
�(w, Ds) = 1

σw

(
1 − Gs

(
D − S

σw

))

∂2

∂S2
�(w, Ds) = 1

σ 2
w

gs

(
D − S

σw

)
≥ 0

We can similarly prove that the loss function, �(w, (D − I )s ) =∫ ∞
(D−I )s

(1 − Gs(z))dz, where (D − I )s = (D−S−I )
σw

, is convex in S and
I . �

(b) The cost function is convex in S and I .

PROOF: From Eq. (1) recall that

E(T C(S, I ))) = (h + e − Cu)I + Cu(D − S)

+ (Cu − e)σw�(w, (D − I )s ) + (e + Co)σw�(w, (D)s)

Observe that

∂

∂I
E(T C(S, I )) = (h + e − Cu) + (Cu − e)σw

∂

∂I
�(w, (D − I )s )

∂2

∂I 2
E(T C(S, I )) = (Cu − e)σw

∂2

∂I 2
�(w, (D − I )s ) ≥ 0 (A1)

The convexity of E(T C(S, I )) with respect to I follows from the fact
�(w, (D − I )s ) is a convex function of I as shown earlier and the assumption
that Cu ≥ e.

With regards to S observe that

∂

∂S
E(T C(S, I )) = (−Cu) + (Cu − e)σw

∂

∂S
�(w, (D − I )s )

+ (e + Co)σw

∂

∂S
�(w, (D)s)

∂2

∂S2
E(T C(S, I )) = (Cu − e)σw

∂2

∂S2
�(w, (D − I )s )

+ (e + Co)σw

∂2

∂S2
�(w, (D)s) ≥ 0. (A2)

The convexity of E(T C(S, I )) with respect to S follows if we assume that
Cu > e, and from the fact that �(w, (D − I )s ) and �(w, (D)s) are convex
functions of S as shown earlier. �

(c) The optimal order quantity S∗ and reservation quantity
I ∗ are given by

S∗ = D − σwG−1
s

(
Co − h

e + Co

)
and

I ∗ = Max

(
0, σw

(
G−1

s

(
Co − h

Co + e

)
− G−1

s

(
h

Cu − e

)))
.

PROOF: Observe that

∂

∂I
E(T C(S, I )) = (h + e − Cu) + (Cu − e)σw

∂

∂I
�(w, (D − I )s )

∂

∂S
E(T C(S, I )) = −Cu + (e + Co)σw

∂

∂S
�(w, Ds)

+ (Cu − e)σw

∂

∂S
�(w, (D − I )s )

(A3)

From the definition of the standardized loss function observe that

∂

∂S
�(w, (D − I )s ) = ∂

∂I
�(w, (D − I )s ) = 1

σw

[
1 − Gs

(
D − I − S

σw

)]

∂

∂T
�(w, Ds) = 1

σw

[
1 − Gs

(
D − S

σw

)]
. (A4)

Using (A3) and (A4), we obtain

∂

∂T
E(T C(T , I ))

= −Cu + (e + Co)σw

∂

∂T
�(w, Ds) + (Cu − e)σw

∂

∂I
�(w, (D − I )s )

Naval Research Logistics DOI 10.1002/nav
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10 Naval Research Logistics, Vol. 00 (2007)

Substituting from (A3) we obtain

∂

∂T
E(T C(T , I ))

= −Cu + (e + Co)σw

∂

∂T
�(w, Ds) + ∂

∂I
E(T C(T , I )) − (h + e − Cu).

Given that ∂
∂I

E(T C(T , I )) = 0 at optimality (the expected total cost is
convex with respect to I ), we obtain

∂

∂S
E(T C(S, I )) = −(h + e) + (e + Co)σw

∂

∂S
�(w, Ds)

= −(h + e) + (e + Co)

(
1 − GS

(
D − S

σw

))
.

Setting ∂
∂S

E(T C(S, I )) = 0, we obtain

S∗ = D − σwG−1
s

(
Co − h

e + Co

)
.

I ∗ is obtained by setting ∂
∂I

E(T C(S∗, I ∗)) = 0, which gives

(h + e − Cu) + (Cu − e)

(
1 − Gs

(
D − I − S∗

σw

))
= 0.

This implies

1 − Gs

(
D − I ∗ − S∗

σw

)
= h + e − Cu

e − Cu
.

Since I ∗ ≥ 0, we obtain

I ∗ = Max

(
0, D − S∗ − σwG−1

s

(
h

Cu − e

))

= Max

(
0, σw

(
G−1

s

(
Co − h

Co + e

)
− G−1

s

(
h

Cu − e

)))
.

�

PROOF OF PROPOSITION 2:

S∗
2 = D − σxF−1

s

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)
and

I ∗
2 = σx

(
F−1

s

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)

− F−1
s

(
h − P(Cu − e)

(1 − P)(Cu − e)

))

PROOF: The expected costs can be written as

E(T C(S, I )) = hI + P(eI + Cu(D − I )) + (1 − P)

(∫ D−I

0
(eI + Cu(D − I − x))dF (x)

)
+ (1 − P)

(∫ D

D−I

e(D − x)dF (x) + Co

∫ ∞

D

(x − D)dF(x)

)

= hI + P(eI + Cu(D − I )) + (1 − P)

(∫ D−I

0
(eI + Cu(D − I − x))dF (x)

)

+ (1 − P)

(
e

∫ D

0
(D − x)dF (x) − e

∫ D−I

0
(D − x)dF (x) + Co

∫ ∞

D

(x − D)dF(x)

)

= hI + P(eI + Cu(D − I )) + (1 − P)

(∫ D−I

0
Cu(D − I − x)dF (x) −

∫ D−I

0
e(D − I − x)dF (x)

)

+ (1 − P)

(
e

∫ ∞

0
(D − x)dF (x) − e

∫ ∞

D

(D − x)dF (x) + Co

∫ ∞

D

(x − D)dF(x)

)

= hI + P(eI + Cu(D − I )) + e(1 − P)(D − S) + (1 − P)

(
(Cu − e)

∫ D−I

0
(D − I − x)dF (x) + (Co + e)

∫ ∞

D

(x − D)dF(x)

)

= hI + P(eI + Cu(D − I )) + e(1 − P)(D − S)

+ (1 − P)

(
(Cu − e)

∫ ∞

0
(D − I − x)dF (x) + (Cu − e)

∫ ∞

D−I

(x − (D − I ))dF (x) + (Co + e)

∫ ∞

D

(x − D)dF(x)

)

= hI +P(eI + Cu(D−I ))+e(1−P)(D−S)+(Cu −e)(1−P)(D−I −S)+(1 − P)

(
(Cu − e)

∫ ∞

D−I

(x − (D − I ))dF (x) + (Co + e)

∫ ∞

D

(x − D)dF(w)

)

E(T C(S, I )) = (h + e − Cu)I + CuD − (1 − P)CuS + (1 − P)((Cu − e)σx l(x, (D − I )s ) + (Co + e)σx l(x, Ds)).

Given that E(T C(S, I )) is convex in S and I , we obtain optimality using
the first order conditions. Observe that

∂E(T C(S, I ))

∂I
= (h + e − Cu) + (1 − P)(Cu − e)σx

∂

∂I
l(x, (D − I )s )

and

∂E(T C(S, I ))

∂S
= −(1 − P)Cu + (1 − P)(Cu − e)σx

∂

∂S
l(x, (D − I )s )

+ (1 − P)(Co + e)σx

∂

∂S
l(x, Ds).

Naval Research Logistics DOI 10.1002/nav
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Chopra, Reinhardt, and Mohan: Decoupling Recurrent Supply and Disruption Risks 11

Given that

∂

∂I
l(x, (D − I )s ) = ∂

∂T
l(x, (D − I )s ),

we have

∂E(T C(S, I ))

∂T
= −(1 − P)Cu + ∂E(T C(S, I ))

∂I
− (h + e − Cu)

+ (1 − P)(Co + e)σx

∂

∂T
l(x, Ds).

Using the fact that ∂E(T C(S,I ))
∂I

= 0 at optimality, we have

∂E(T C(S, I ))

∂T
= −(1−P)Cu−(h+e−Cu)+(1−P)(Co+e)σx

∂

∂T
l(x, Ds).

Using the fact that ∂
∂T

�(x, Ds) = 1
σx

(1 − Fs(
D−S
σx

)) and setting ∂E(T C(S,I ))
∂T

to be 0, we obtain

(1 − P)(Co + e)

(
1 − Fs

(
D − S∗

2

σx

))
= h + e − PCu.

Thus,

S∗
2 = D − σxF−1

s

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)
.

I ∗
2 is obtained by setting ∂

∂I
E(T C(S∗

2 , I ∗
2 )) = 0, which gives

(h + e − Cu) + (1 − P)(Cu − e)σx

∂

∂I
l(x, (D − I )s ) = 0

Substituting

∂

∂I
l(x, (D − I )s ) = 1

σx

(
1 − Fs

(
D − S − I

σx

))

we obtain

h − P(Cu − e) = (1 − P)(Cu − e)Fs

(
D − S∗

2 − I ∗
2

σx

)

Thus

I ∗
2 = D − S∗

2 − σxF−1
s

(
h − P(Cu − e)

(1 − P)(Cu − e)

)
.

Substituting for D − S∗
2 , we obtain

I ∗
2 = σxF−1

s

(
(1 − P)(Co + e) − h − e + PCu

(1 − P)(Co + e)

)

− σxF−1
s

(
h − P(Cu − e)

(1 − P)(Cu − e)

)

Given that I ∗
2 must be non-negative, the result follows. �
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