The Greening of Freight in Europe: Assessing the Market Potential of New Services and Lower Barriers Using a Dynamic Intermodal Simulation Assignment Methodology

Hani S. Mahmassani, Elise Miller-Hooks, Rahul Nair, Kuilin Zhang Vishnu Charan Arcot, Jing Dong, Aaron Kozuki, Johanna Ludvigsen

2nd Annual National Freight Conference
5 December 2007
Organization of Presentation

- Barriers to seamless operation
- Evaluating operational changes:
 - Network modelling platform
- Operational and service design scenarios
 - Border crossing time improvements
 - Terminal improvements
 - Infrastructure improvements
 - Scheduling constraints and priorities
- The take-away: potential of operational changes
Network Modelling Structure

- Demand
- Supply

Mode and Path Choice
- Assignment
- Simulation
 - Link
 - Node
- Intermodal Path Computation

Modal/Market Shares, Service Travel Times, Terminal Delays

Infrastructure
- Network Services
- Schedule Design
- Route Design

CDM* Operation Rules

* Collaborative Decision Making
Dynamic Intermodal Simulation-Assignment Platform

Consolidation at Origin:
Shipments to trucks.

Intermodal Terminal:
Shipment transfer from trucks to railcars.

Shuttle Service (for traditional trains):
From terminal to classification yard.

Classification Yard:
Train assembly process. Not required for intermodal block trains.

Border Station:
Train is delayed.

Classification Yard:
Train is disassembled. For intermodal block trains, this process is not required.

Port:
Transfer of shipments from rail cars to ferry. Ferries move based on given timetables.

Destination:
Unloading shipments.

Shuttle Service (for traditional trains):
From classification yard to port.

Simulation-assignment method:
• processes simulated to determine processing costs and times at nodes and links of path
• Shipments assigned using joint mode-path choice assignment
• Detailed representation allows us to test various policies, such as infrastructure improvements, service frequency changes, and improvement in border crossing procedures.
Problem Statement and Assumptions

Assumptions
- Given time-dependent OD demand tables (multiple products)
- Calibrated mode/carrier choice model (truck only, intermodal container, and multimodal combination)
- Multimodal network with train/ferry timetable
- Terminal service time probability distribution functions

Solve for
- Assignment of time-varying multiple product (commodities) shipments to intermodal paths through network, and
- Associated service levels and delays

Methodological Approach
- Dynamic Simulation-assignment iterative solution framework
Simulation-assignment Solution Framework

OD shipment demand and historical paths

Multimodal Freight Network Simulator

Time-Dependent Intermodal Least-Cost Paths for multiple products

Network flow mode-path assignment

Update of mode and path assignment

Convergence checking

n = n + 1

No

Yes

Stop
Multimodal Freight Network Simulator

Inputs:
- OD flow;
- Path split;
- Mode share.

Demand loading:
- Shipment generation;
- Shipment consolidation;
- Conveyance loading.

Link moving:
- Truck moving;
- Shuttle train moving;
- Train moving;
- Ferry moving.

Node/mode transfer:
- Truck transfer at road intersection;
- Train transfer at intermediate station;
- Mode transfers at intermodal transfer terminal, classification yard, and port.

Have all shipments reached their respective destinations? Or,
Is simulation time at the end of planning horizon?

Yes
Stop

No

$t = t + 1$
Process at Classification Yard (Bulk queueing simulation model)

- Locomotive
- Railcar to destination 1
- Railcar to destination 2
- Railcar to destination 3
- Bulk arrival
- Bulk departure
- Train 1
- Train 2
- Train 3
- Bulk Service
- Queueing
- AT_i
- W_i
- $ΣxS_i$
- ADT_i
- Train 4
- Train 5
- Train 6
- ATi
- Wi
- ΣxSi
- ADTi
Simulation
The REORIENT Network

- Spans 23 countries
- Rail portion
 \((\text{Nodes};\text{Arcs}) = (5577;5753)\)
- Road portion
 \((\text{Nodes};\text{Arcs}) = (4713;5460)\)
- Sea portion
 \((\text{Nodes};\text{Arcs}) = (54;21)\)
Demand for Freight Transport

- 3.2 million shipments per week (2006)
 - 5.8 million for forecast year 2020
 - Source: ETIS

- 117 x 117 O-D zone pairs
- 11 commodity types
- 2 manifestations (‘bulk’ and ‘unitized’)
What Is the Current Freight Flow within REORIENT Corridor?

<table>
<thead>
<tr>
<th>Weekly Flow in Tons (57,616,633)</th>
<th>Road only</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47,327,745</td>
<td>10,288,888</td>
</tr>
<tr>
<td></td>
<td>(82.14%)</td>
<td>(17.85%)</td>
</tr>
</tbody>
</table>

- **Intermodal**: 10,288,888 (18%)
- **Truck-only**: 47,327,745 (82%)

Weekly Flow in Tons

- Intermodal: 10,288,888
- Truck-only: 47,327,745

Categories

- Agricultural products and live animals
- Foodstuffs and animal fodder
- Solid mineral fuels
- Petroleum products
- Ores and metal waste
- Metal products
- Crude and manufactured minerals, building materials
- Fertilizers
- Chemicals
- Machinery, manufactured articles
- Crude oil
Proposed Service Routes

T1 = Green (Bulk)
Swinoujscie - Vienna/Bratislava - Budapest

T2 = Yellow (Unitized)
Trelleborg-Swinoujscie-Bratislava/Vienna

T3 = Red (Unitized)
Gdansk/Gdynia-Bratislava/Vienna-Budapest-Beograd-Thessalonica

T4 = Blue (Bulk and Unitized)
Bratislava-Budapest-Bucharest-Constantia
If we build it, will they come?
Proposed Services

- New rail services on current network
- New rail services on improved network
 - Multi-voltage locomotives
 - Improved signaling (e.g. ERTMS) along route from Gdansk to Thessaloniki
 - ICT for improved border station performance
 - 20% increase in speeds in Poland
 - Electrification of all tracks on proposed services
Potential Market for Proposed Rail Services

Weekly flow on new services in ton-km

Scenario 2 (Current) Scenario 9 (Best)
Services: Catchment Area
(Origins of shipments using new services)

Current

Best

Legend:
- Less than 500 tons
- 500 - 1000 tons
- 1000 - 2000 tons
- 2000 - 5000 tons
- Greater than 5000 tons
Does Greater Access Increase the Proposed Rail Services’ Attractiveness?

<table>
<thead>
<tr>
<th>Level</th>
<th>Loading points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal</td>
<td>Harbors (including Thessaloniki), Vienna, Bratislava, Budapest, Beograd</td>
</tr>
<tr>
<td>Greater access</td>
<td>Additional loading points - Sofia, Bucaresti, and Poznan</td>
</tr>
</tbody>
</table>

Weekly Flow on new services in ton-km

- Scenario 2
- Scenario 3
Do Border Crossing Delays Hinder Rail Utilization?

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Border crossing times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>3-4 hours</td>
</tr>
<tr>
<td>Sophisticated</td>
<td>15-45 min</td>
</tr>
</tbody>
</table>

Weekly Flow on new services in ton-km

Scenario 3

Scenario 5

Map showing rail routes through European countries with border crossings indicated.
Do Border Crossing Delays Hinder Rail Utilization?

Before improvement

After improvement
Infrastructure Improvements

- Improved signaling
- 20% increase in speed in Poland
- Electrification of all track along proposed services
- Terminal processing time improvement

Weekly Intermodal Flows in tons in overall REORIENT network

9% increase in intermodal flows
Relaxing Time of Day Scheduling

<table>
<thead>
<tr>
<th>Level</th>
<th>Scheduling Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Night time only</td>
</tr>
<tr>
<td>Level 2</td>
<td>Additional day time operations with strict priority for passenger trains.</td>
</tr>
</tbody>
</table>

14.9% increase in intermodal flows

[Diagram: Flow on new services in ton-km]
Market Opportunity for Rail Services
Running during Day Time?
Sum of Parts

- Services attract more freight when offered together

![Service usage in Ton-km](image)

- All services in tandem (scenario 9)
- Individually (scenarios 11 through 14)

Services attract more freight when offered together
How to pay for improved infrastructure?

Breclav Station
Streamlined border crossing

Budapest Terminal
Better equipment, more efficient handling
Doubling Infrastructure Charges…

Leads to
- estimated 18.2% reduction in total demand (flows in tons)
- though still 69% increase in revenues to pay for improvements

Improved Network

Current vs. Increased Charges (2006)

Weekly Intermodal Flows in tons in overall REORIENT network
Concluding Remarks

- Improved border operations, infrastructure improvements, greater access to services, relaxing scheduling constraints have considerable potential to increase intermodal rail share.
- Further improvement possible through more sophisticated operation of the rail network to allow more efficient priority allocation to different services.
- Managing the rail system in the 21st Century will require new management models. Most promising models will be based on collaborative decision-making architectures.
Questions?

Hani Mahmassani (masmah@northwestern.edu)
Elise Miller-Hooks (elisemh@umd.edu)