Delivering Sustainability: Transporting Goods in Urban Spaces

Prof. Anne Goodchild
Associate Professor, Civil and Environmental Engineering
Director, Supply Chain Transportation and Logistics Center
Staff and Students of the Supply Chain Transportation and Logistics Center
Image of a Sustainable City
The Sustainable City:

– Dense residential development
– Few cars
– People live closer to where they work and shop
Current City Street – New York
Current City Street – Seattle
What is the current state of urban goods movement, and what role can it play in developing sustainable cities?
What is Sustainable Goods Movement?

- Compatible with urban living
 - Quiet
 - Low to no local pollutants
 - Safe for other users
 - Minimizes impact on local traffic
- Low to no GHG emissions
- Economically viable
What are the Current Challenges?

- Congestion
- Emissions
- Consumer demands
Congestion in Seattle

Source: TTI Mobility Data
US Criteria Pollutants Percentage by Vehicle Type

Roughly 50%

20-25%

Only 7-8%

NEI 2008 v1.5 GPR, 2011 US GHG Inventory - 2009 data, 2005 BTS Annual Report
What are the Current Challenges?

Shift in Shopping
A recent survey of online shoppers revealed that for the first time they bought more of their purchases online rather than in stores.

Source: UPS/comScore online survey conducted between Jan. 30 and Feb. 9, 2016 with 5,330 respondents who had have made at least 2 online purchases in a typical 3-month period.
What are the Current Challenges?

Sales revenue: Amazon vs major retail stores

USD Billion

- Total sales by major Retail stores*
- Total sales of Amazon in North America**

*Note: This includes major retail store houses: DDG, JCP, JWI, KSG and M
**Note: The estimated figures for 2015, 2016 and 2017 are the total global sales revenue projections for Amazon as reported by Bloomberg Finance LP.

Source: Bloomberg Finance LP; DB Global Markets Research

Credit: Business Insider
Can delivery services accomplish last mile delivery with:

– Less vehicle miles travelled?
– Less carbon dioxide?
– Less nitrous oxide?
– Less particulate matter?
How Might a Delivery Service Deliver Sustainability?
Random selection

Proximity assignment

Good Logistics Matters
Vehicle Miles Travelled can be Dramatically Reduced with Delivery

Distribution of and Service Type for Customers

- Random Selection
 - Passenger Travel: 8,004
 - Delivery Vehicle: 1,453

- Proximity Assignment
 - Passenger Travel: 6,374
 - Delivery Vehicle: 367

feet/customer

Vehicle Miles Travelled can be Dramatically Reduced with Delivery
Carbon Dioxide Reductions are Less Clear

![Carbon Dioxide Reductions Chart]

- **Random Selection**
 - Passenger Travel: 0.60
 - Delivery Vehicle: 0.33

- **Proximity Assignment**
 - Passenger Travel: 0.57
 - Delivery Vehicle: 0.08

Distribution of and Service Type for Customers

- Passenger Travel
- Delivery Vehicle
- Random Selection
- Proximity Assignment

- **Carbon Dioxide in Kilograms per Customer:**
 - Random Selection: 0.60, 0.57
 - Proximity Assignment: 0.33, 0.08

Note: The chart shows the distribution of carbon dioxide emissions (in kilograms per customer) for different service types and selection methods.
Can delivery services accomplish last mile delivery with:

– Less vehicle miles travelled?
– Less carbon dioxide?
– Less nitrous oxide?
– Less particulate matter?
Research Questions

• Does a warehouse-based delivery model provide reductions in VMT, CO2, NOX and PM?

• Does a depot-delivery model provide reductions in VMT, CO2, NOX and PM?

• Are these results consistent across more and less dense neighborhoods?
Warehouse-based Delivery

Regional Warehouse

- Grocery Store
 - Home
 - Home
 - Home

- Grocery Store
 - Home
 - Home

- Grocery Store
 - Home
 - Home

- Combination Truck
- Single-unit Truck
- Passenger Car
Density of King County Municipalities

![Graph showing road density vs. address density for Black Diamond, Sammamish, and Seattle.](image-url)
Delivery Reduces Vehicle Miles Travelled in all Municipalities

<table>
<thead>
<tr>
<th></th>
<th>VMT</th>
<th>CO2 (kg)</th>
<th>Nox (g)</th>
<th>PM10 (g)</th>
<th>Travel time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>1.1</td>
<td>1.1</td>
<td>2.7</td>
<td>0.10</td>
<td>2.1</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>1.4</td>
<td>1.7</td>
<td>3.8</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>Sammamish</td>
<td>1.6</td>
<td>2.4</td>
<td>5.2</td>
<td>0.17</td>
<td>3.3</td>
</tr>
<tr>
<td>Seattle</td>
<td>2.1</td>
<td>1.8</td>
<td>6.9</td>
<td>0.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>8.4</td>
<td>3.0</td>
<td>8.0</td>
<td>0.34</td>
<td>13.8</td>
</tr>
<tr>
<td>Sammamish</td>
<td>8.6</td>
<td>3.3</td>
<td>10.3</td>
<td>0.46</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Categories
- Passenger Vehicles
- Local Depot Delivery
- Regional Warehouse Delivery
Delivery Increases Local Pollutants in all Municipalities

<table>
<thead>
<tr>
<th></th>
<th>VMT</th>
<th>CO2 (kg)</th>
<th>Nox (g)</th>
<th>PM10 (g)</th>
<th>Travel time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>1.1</td>
<td>1.1</td>
<td>2.7</td>
<td>0.10</td>
<td>2.1</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>1.4</td>
<td>1.7</td>
<td>3.8</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>Sammamish</td>
<td>1.6</td>
<td>2.4</td>
<td>5.2</td>
<td>0.17</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>VMT</th>
<th>CO2 (kg)</th>
<th>Nox (g)</th>
<th>PM10 (g)</th>
<th>Travel time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>2.1</td>
<td>1.8</td>
<td>6.9</td>
<td>0.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>8.4</td>
<td>3.0</td>
<td>8.0</td>
<td>0.34</td>
<td>13.8</td>
</tr>
<tr>
<td>Sammamish</td>
<td>8.6</td>
<td>3.3</td>
<td>10.3</td>
<td>0.46</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Delivery Reduces Carbon Dioxide in Some Municipalities

<table>
<thead>
<tr>
<th></th>
<th>VMT</th>
<th>CO2 (kg)</th>
<th>Nox (g)</th>
<th>PM10 (g)</th>
<th>Travel time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>1.1</td>
<td>1.1</td>
<td>2.7</td>
<td>0.10</td>
<td>2.1</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>1.4</td>
<td>1.7</td>
<td>3.8</td>
<td>0.13</td>
<td>2.6</td>
</tr>
<tr>
<td>Sammamish</td>
<td>1.6</td>
<td>2.4</td>
<td>5.2</td>
<td>0.17</td>
<td>3.3</td>
</tr>
<tr>
<td>Seattle</td>
<td>2.1</td>
<td>1.8</td>
<td>6.9</td>
<td>0.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Black Diamond</td>
<td>8.4</td>
<td>3.0</td>
<td>8.0</td>
<td>0.34</td>
<td>13.8</td>
</tr>
<tr>
<td>Sammamish</td>
<td>8.6</td>
<td>3.3</td>
<td>10.3</td>
<td>0.46</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Passenger Vehicles
Local Depot Delivery
Regional Warehouse Delivery
Delivery Would Decrease Carbon Dioxide in Most Municipalities

- PV better
- Seattle
- Black Diamond
- Sammamish

Address density (address/mi²)

Road density (mi/sq mi)
Are Delivery Services Sustainable?

• Reduce VMT and CO2 in the vast majority of cases with current vehicle fleet
• Increase local pollutants
• Indirect effects
 – Reduce the need for personal vehicles
 – Reduce vehicle activity
 – Reduce parking requirements
How do Increasing Service Expectations Affect Sustainability?
10 miles

Serving all 24 customers in a day

Poor Customer Service
Better Customer Service Increases Delivery Distance Travelled

Serving 12 customers in each of 2 half days. Distance increased by 40%.
Are Delivery Services Part of a Sustainable Future?

• Reduce vehicle miles travelled and carbon dioxide in most communities
• More opportunity in less urban spaces
• Indirect effects
 – Reduce the need for personal vehicles
 – Reduce vehicle activity and parking requirements
 – Reduced conflicts with personal vehicles
• Must upgrade vehicle technology to reduce local pollutants
 – Lighter weight
 – More consistent with development patterns
Questions?

http://depts.washington.edu/sctlctr

annegood@uw.edu