Using Automated Data Sources to Improve the Performance of Public Transport Systems: A Framework and Applications

Nigel H.M. Wilson
MIT
April 2017

Northwestern University
NUTC Seminar
Outline

• The changing environment and customer expectations
• Automated Data Collection Systems
• Framework for using Automated Data Sources (ADS)
• Analysis building blocks
 • OD Matrix Estimation
 • Inferring Train Loads
 • Measuring Service Reliability
• Future Prospects
The Changing Environment and Customer Expectations

• Many customers expect a personal relationship with service providers, e.g. Amazon
• Information technology advances raise expectations and provide new opportunities, e.g. mobile internet
• Rising incomes result in fewer captive riders
• Need to attract choice riders
• Challenges for public transport
 • Gap between customer expectations and current reality
 • Uber-type competition
 • AV in mid-term future
Automated Data Systems

- **Automatic Fare Collection Systems (AFC)**
 - increasingly based on contactless smart cards with unique ID
 - provides entry (exit) information (spatially and temporally) for individual passengers
 - traditionally not available in real-time

- **Automatic Vehicle Location Systems (AVL)**
 - bus location based on GPS
 - train tracking based on track circuit occupancy
 - available in real time

- **Automatic Passenger Counting Systems (APC)**
 - bus systems based on sensors in doors with channelized passenger movements
 - passenger boarding (alighting) counts for stops/stations with fare barriers
 - train load-weigh systems can be used to estimate number of passengers on board
 - traditionally not available in real-time
Public Transport Operators/Agencies are at a Critical Transition in Data Collection Technology

Manual
• low capital cost
• high marginal cost
• small sample sizes
• "hard and soft"
• unreliable

• limited spatially and temporally
• not available immediately

Automatic
• high(er) capital cost
• low marginal cost
• large sample sizes
• "hard"
• errors and biases can be estimated and corrected

• ubiquitous
• available in real-time or quasi real-time
ADS - Potential

- Integrated ADS database
- Models and software to support many agency decisions using database
- Monitoring and insight into normal operations, special events, unusual weather, etc.
- Large, long time-series disaggregate panel data to better understand customer experience and travel behavior
ADS - Reality

• Most ADS systems are implemented independently
• Data collection is ancillary to primary system function
 • AVL - emergency notification, stop announcements
 • AFC - fare collection and revenue protection
• Many problems to overcome:
 • not easy to integrate data
 • requires new resources and expertise
Opportunities

• **ADS**
 • monitoring system status
 • measuring reliability
 • understanding customer behavior

• **Data + Computing**
 • simulation-based predictive performance models

• **Communications**
 • real time information (demand)
 • operations management (supply)

• **Systematic approaches for planning, operations, real-time control**
Key Agency/Operator Functions

A. Off-Line Functions

• Service and Operations Planning
 • Network and route design
 • Frequency setting and timetable development
 • Vehicle and crew scheduling

• Performance Measurement
 • Measures of operator performance against plans/contract specs
 • Measures of customer experience
Key Agency/Operator Functions

B. Real-Time Functions

• Service and Operations Control and Management
 • Dealing with deviations from plans, both minor and major
 • Dealing with unexpected changes in demand

• Customer Information
 • Information on routes, trip times, vehicle arrival times, etc.
 • Increasingly dynamic
Key Functions

Supply

Service and Operations
Planning

Off-line Functions

Performance Measurement

System Monitoring, Analysis, and Prediction

Real-time Functions

Customer Information

Demand

Service Management

ADS

NUTC Seminar Northwestern University Nigel Wilson April 2017
Analysis Building Blocks

• OD Matrix Estimation
• Inferring train loads
• Measuring Service Reliability
OD Matrix Estimation

Objective:

• Estimate passenger journey OD matrix at the network level using AFC and AVL data
 • Multimodal public transport passenger flows

• AFC characteristics
 • Open (entry fare control only)
 • Closed (entry+exit fare control)
 • Hybrid

Source:
Trip Chaining: Basic Idea

Each AFC record includes:

• AFC card ID
• transaction type
• transaction time
• transaction location: rail station or bus route and stop (either directly or based on time-matching with AVL data)

The destination of many trip segments (TS) is close to the origin of the following trip segment.
Destination Inference

Route #1

Route #2

Route #5

Route #1
Interchange Inference

Journey 1
Route #1
Route #2
Route #5

Journey 2
Route #1
Trip-Chaining Method for OD Inference

Key Assumptions for Destination Inference to be correct:

• No intermediate private transportation mode trip segment
• Passengers will not walk a long distance
• Last trip of a day ends at the origin of the first trip of the day
Journey 1
1. Enter East Croydon NR station, 7:46
2 & 3. Out-of-station interchange to Central Line at Shepherds Bush, 8:30
4. Exit LU at White City, 8:35
5. Board 72 bus at Westway, 8:36
6. Alight 72 bus at Hammersmith Hospital, 8:42

Journey 2
7. Board bus 7 at Hammersmith Hospital, 16:17
8. Alight bus 7 at Latymer Upper School, 16:19
9. Board bus 220 at Cavell House, 16:21
10. Alight bus 220 at White City Station, 16:24
11. Enter LU at Wood Lane, 16:25
12 & 13. Out-of-station interchange from Circle or Hammersmith & City to District or Piccadilly, 16:40
14. Exit LU at Parsons Green, 16:56
Trip-Chaining Method Steps

• Infer start and end of each trip segment for individual AFC cards
• Link trip segments into complete (one-way) journeys
• Integrate individual journeys to form seed OD matrix (by time period)
• Expand to full OD matrix using available control totals
 • station entries and/or exits for rail
 • passenger entries and/or exits by stop, trip, or period for bus
Summary Information on London Application

• Oyster fare transactions/day:
 • Rail (Underground, Overground, National Rail): 6 million (entry & exit)
 • Bus: 6 million (entry only)

• For bus:
 • Origin inference rate: 96%
 • Destination inference rate: 77%

• For full public transport network:
 • 76% of all fare transactions are included in the seed matrix

• Computationally feasible (30 mins on Intel PC for full London public transport OD Matrix for entire day, including both seed matrix and scaling)
Inferring Train Loads

• Develop a methodology to “assign” passengers to trains through the use of AFC, ATR data

• The methods support:
 – Assessment of service utilization
 – Service quality metrics from the customers’ point of view
 • Crowding on trains and in stations
 • Number of passengers denied boarding
 • More detailed journey time metrics

Source: "Passenger-to-Train Assignment Model Based on Automated Data."
Yiwen Zhu, Master of Science in Transportation thesis (MIT, 2014)
Feasible Train Itineraries

- Given: AFC & ATR data
- A train itinerary is feasible if:
 - It departs after the passenger taps in, and
 - Arrives before the passenger taps out
Feasible Train Itineraries Example
Passenger Assignment Model (PAM)

- Each station is examined in sequence starting from the terminal.
- At each station, the trainload is calculated from the corresponding probabilities of passengers whose feasible itinerary set includes this train.
Passenger Movement

- Based on the output of PAM, individual passenger movements can be presented in detail.
Recent Extensions

- Relaxing assumptions:
 - Denied boardings due to capacity constraints
 - Interchange demand

Future Work

- Advanced customer information, such as expected crowding at stations and in trains
- Real time model and application
Measuring Service Reliability

Objective:

- Define a customer-centric measure to capture effects of reliability

Expected benefits:

- Improve customer communication
- Capture the effects of strategies to improve service reliability
Reliability Buffer Time (RBT)

\[RBT_{OD} = JT(N^{th}) - JT(50^{th}) \]

“How much additional time should I budget, beyond my typical travel time, to ensure an on time arrival N% of the time?”
Calculating the RBT

- Calculated for each hour of the day over some period of time
- RBT measures the total variation from all portions of a journey:

Access Time + Wait Time + In Vehicle Time + Egress Time
Variants of the RBT

Journey Component Variants
- Full Journey Time
- Platform to Platform Time
- In-vehicle Time

Passenger Variants
- All Customers
- Groups of Passengers
- Individual Passengers
Individual vs Group RBTs Example:
Single OD Pair, 2 Months Data
Summary

- Complete Journey OD Estimation practical with ADS
 - foundation for many analyses related to customer experience
- Realistic to assess service reliability for individuals and journeys
 - most critical aspect of customer experience
- Targeted on-line surveys an efficient alternative to other survey methods
- Customer classification is critical in understanding the customer experience
- Developing predictive models is a critical research need
Future Prospects

• Panel data combined with full journey OD estimation and journey time provides the basis for extensive customer experience and behavior analysis including:
 • understanding impacts of changes in service and price
 • understanding customer attraction, retention, and attrition
 • informing "information push" customer information strategies
 • documenting the impacts of marketing and promotional strategies

• Strategies in light of Uber-type service and AV technology