Air Transport Industry Structure, Economics, Operations

Northwestern University Transportation Center April 28, 2016
Peter L. Smith

Context

- The Presenter
- BA Harvard, MST Northwestern, MBA Foster School (U. of Washington)
- Urban and regional transportation: 6 years including $11 / 2$ years in Lille, France
- AT\&T Communications, market analysis: 2 years
- The Boeing Company: 29 years until retirement 7/1/2013
- Telecommunications business strategy
- IT design, project management, and quality assurance
- Commercial Aviation Services and Marketing: airline value analysis, market analysis, and competitive analysis
- Not representing Boeing: all positions and opinions are presenter's
- Objectives vis-à-vis audience
- Context, and something new about the industry
- Spark questions for research and investigation
- Give suggestions for those seeking to work in the industry

Airline Operating Costs ("Typical" Airline, 2014)

Source: Boeing internal analysis, used with permission for presentation at Northwestern University 4/28/2016

- Crew Compensation
\square Airport HandlingFuel \& Oil
- Revenue Management
- Rental, Deprec \& AmortPassenger Service
- General \& Admin
- Airframe MaintenanceEngine Maintenance
Maintenance Burden
Other Expenses

The Fuel Factor

Oil price outlook uncertain but low

Source: Platts, IEA, Press reports
© International Air Transport Association, 2015. Economic Performance of the Airline Industry, end year 2015

Profit Trend

Record for the airline industry

Source: ICAO, IATA Economics
© International Air Transport Association, 2015. Economic Performance of the Airline Industry, end year 2015

Career Factors in the Aviation Industry

- OEM
- Desired background
- Engineering background preferred; business supplemental
- Airline experience valued
- Departmental alignment enhances: e.g. fleet management, maintenance
- Functional: e.g. accounting, law, supplier management, IT, non-commercial aviation
- Entry
- Networking
- Internships
- Jobs advertised
- Career paths
- Management
- Technical: many disciplines
- Marketing and Sales
- Airline
- Fast paced: "day of" emphasis
- Timeliness and accuracy
- Business cycle - timing

Scope: Single and Twin-Aisle > 90 Seats

FORECAST 2015-2034 DELIVERIES

FORECAST 2015-2034 DELIVERY VALUE (SBN)

Passenger vs. Cargo

Very different businesses

Source: ICAO, IATA Economics
© International Air Transport Association, 2015. Economic Performance of the Airline Industrv, end vear 2015

Economic Dynamics

Globalization has paused

International trade compared to global industrial production

© International Air Transport Association, 2015. Economic Performance of the Airline Industry, end year 2015

How the Industry Works - Major Players

Life Cycle of an Airplane Sale

OEM Aftermarket "Services \& Support"

- Training
- Parts: "spares". \& routine
- Engineering support
- Field Service: 100's of offices worldwide
- Repairs

Boeing Field Service offices
Theow sme - Modifications - SB's Airbus Field Service and other offices

- Engineering Data
- Navigational data (Boeing: Jeppesen)
- Information based
- Airplane health
- Operations centers
© Consulting

- Fuel, other operational \& business

Airbus \& Boeing Fleet Statistics 2015

	Airbus	Boeing
2015 Net Orders	1,080	768
2015 Aircraft Delivered	635	762
Total Orders (to 3/16)	16,361	23,132
Total Deliveries (to 3/16)	9,643	17,392
In Operation (3/16)	8,762	$10,000+$

Airbus \& Boeing Financial Statistics 2015

(\$ billions)	Airbus Group	Airbus Commercial	Boeing Company	Boeing Commercial
Employees	136,574		~ 160,000	
New Orders (1)	\$178.7	\$156.2	\$83.0	\$57.0
Order Book (1)	\$1,130.2	\$1,070.2	\$489.0	\$432.0
Revenue	\$72.5	\$51.5	\$96.1	\$66.0
Op. Earnings (Boeing)			\$7.4	\$5.2
PBFCIT (2) (Airbus)	\$4.6	\$2.6		
Net Earnings / PfP (3)	\$3.0		\$5.2	
Cash \& Equivalents - EoP	\$8.2		\$11.3	

(1) New Orders and Order Book / Backlog are based on list prices. Actual prices may be lower.
(2) Airbus PBFCIT = Profit Before Finance Costs and Income Taxes.
(3) Boeing Net Earnings believed to be roughly equivalent to Airbus Profit for Period.

Currency conversion: $\$ 1=€ 0.89$ representative rate for $2015 . \$ 1=€ 0.92$ at EoP on 12/31/15.

Commercial Airplanes

- Delivered 176 airplanes in Q1
- Orders valued at \$6B in Q1; robust backlog of \$424B
- Won 121 net orders

Revenues \& Operating Margins

- Achieved 737 MAX first flight and began flight test
* Began 12 per month rate in 787 Final Assembly
- Started major assembly early on the 787-10

737 MAX First Flight

Some Causes of Flight Schedule Delays

- Weather
- Air traffic control
- Passenger
- Security
- Facilities
- Damage
- Connecting passenger
- Ramp

Mechanical / technical (tend to be long, "creeping")

- Flight crew not available
- Cabin crew not available
- Equipment not available

Previous delay ("Consequential")

NOTE: Many airlines do not track the lengths of delays, and/or do not understand their true costs.

Cost of a Flight Delay, by Length of Delay "Notional", normalized by seat capacity

\rightarrow Low Schedule Frequency--High Schedule Frequency

The Low-Cost Carrier (LCC) Model

- Primarily point-to-point operations.
- Serving short-haul routes, often to/from regional or secondary airports.
- A strong focus on price sensitive traffic, mostly leisure passengers.
- Typically one service class only, with no (or limited) customer loyalty programmes.
- Limited passenger services, with additional charges for some services (e.g. onboard catering).
- Low average fares, with a strong focus on price competition.
- Different fares offered, related to aircraft load factors and/or length of time before departure.
- A very high proportion of bookings made through the Internet.
- High aircraft utilisation rates, with short turnaround times between operations.
- A fleet consisting of just one or two types of aircraft.
- Private-sector companies.
- A simple management and overhead structure with a lean strategic decisionmaking process.
© International Air Transport Association, 2006. IATA Economics Briefing № 5, Airline Cost Performance, 7/2006

Alaska to Acquire Virgin America

Airline Market Segments - N. America

We believe there is significant demand for low-fare carriers that offer a premium product.

VIRGIN AMERICA'S SUPERIOR BUSINESS MODEL PREMIUM REVENUE GENERATION WITH A LCC COST BASE

Combined Airline Statistics

Alaska + Virgin by the Numbers

Annual Revenues	
Annual Passengers	32 Million
Aircraft	$\begin{gathered} 152 \text { Boeing } \\ 52 \text { Q400 } \\ 15 \text { regional jets } \end{gathered}$
Daily Departures	1,000
Destinations	112
Pre-Tax Profit	\$1.3 Billion

Nrimi america $\$ 1.5$ Billion
7 Million
63 Airbus
200
24
$\$ 200$ Million

Alaska / Virgin American Route Networks

Emergence of Fewer, Larger Airlines

Consolidation has led to dominance of just four airlines.
Airline Domestic Market Share (Revenue)

	1980	1990	2000	2010	2015
					Southwest.
	1 EASTERN $A^{*} A$ AmericanAirlines ${ }^{*}$ united Alplines	USAIR ADELTA UNITED AIRLINES $A^{\prime} A$ AmericanAirlines	nuva UNITED A^{y} AmericanAirlines ${ }^{2}$ Δ Delta	UNITED southwestcom $A^{\prime \prime} A$ AmericanAirlines ${ }^{*}$ A DELTA	UNITED ADELTA American Airlines
Marketshare of 4 largest carriers	61\%	68\%	61\%	65\%	84\%

Acquisition Economic Overview

Significant synergies create value for our owners.

We expect one-time costs to total $\sim \$ 300 \mathrm{M}$ - $\$ 350 \mathrm{M}$

	Average Annual Run Rate Estimates
Revenue Synergies	$\$ 175 \mathrm{M}$
Net Cost Synergies	$\$ 50 \mathrm{M}$
Total Synergies	$\$ 225 \mathrm{M}$

Acquisition Financial Overview

We expect to finance the transaction with cash on hand, aircraft debt and a temporary slowdown of share buybacks.

Acquisition Price	
Equity Purchased	$\$ 2.6 \mathrm{~B}$
Net Debt and Leases Assumed	$\$ 1.4 \mathrm{~B}$
Total	$\$ 4.0 \mathrm{~B}$

Financing Sources

Cash	$\$ 0.6 \mathrm{M}$
Debt and Leases Assumed	$\$ 1.4 \mathrm{~B}$
New Debt Issued	$\$ 2 \mathrm{~B}$
Total	$\$ 4.0 \mathrm{~B}$

Traditional Maintenance Checks

	A	B	C	D / HMV
Interval - FH	$400-600$	(1)	(2)	
Interval - Cycles	$200-300$	(1)		72
Interval - Months		$6-8$	$20-24$	Up to 50,000
Maintenance Hrs	$20-60$	$120-150$	Up to 6,000	Up to 2 months
AC Down Time	Overnight	$1-3$ days	1-2 wks +	Sers
Purposes	Systems, etc.	Systems, etc.	Structural and zone inspections	Deep inspection , overhaul, cabin

(1) May be the same as for A checks.
(2) May be defined by manufacturer.

