Connecting E-Hailing to Mass Transit Platform

Marco Nie ¹

¹Department of Civil and Environmental Engineering, Northwestern University

Transportation Center Seminar Series, Northwestern University, 2016
Challenges

Chronic traffic congestion (Over $100 billion/year for wasted time and fuel in the US)
Elevated environment impacts of travel (about a quarter of greenhouse gas emissions)
Challenges

Added vulnerability to energy insecurity (60% petroleum in the US)
Limited mobility options for those who cannot drive.
Towards sustainable transportation

My research has been focused on developing solutions for sustainable transportation. Specifically, my research profile in the past five years features:
Towards sustainable transportation

My research has been focused on developing solutions for sustainable transportation. Specifically, my research profile in the past five years features:

- Promoting alternative fuel vehicles;
Towards sustainable transportation

My research has been focused on developing solutions for sustainable transportation. Specifically, my research profile in the past five years features:

- Promoting alternative fuel vehicles;
- Exploiting novel travel demand management strategies;
Towards sustainable transportation

My research has been focused on developing solutions for sustainable transportation. Specifically, my research profile in the past five years features:

- Promoting alternative fuel vehicles;
- Exploiting novel travel demand management strategies;
- Reinventing transit systems;
Towards sustainable transportation

My research has been focused on developing solutions for sustainable transportation. Specifically, my research profile in the past five years features:

- Promoting alternative fuel vehicles;
- Exploiting novel travel demand management strategies;
- Reinventing transit systems;
- Analyzing new mobility services
Disruptive technologies

- Mobile computing and communication technologies
Disruptive technologies

- New vehicle technology
Disruptive technologies

- Ridesourcing and ridesharing
Disruptive technologies

- Social network
Future of personal mobility

Most travellers will give up not only driving but likely also car ownership; personal travel will be mostly provided as a public service, operated by driverless cars; traffic congestion will be here to stay (if not becoming worse).

What do we need to get there?

- New strategies for design and operation
- New theories for regulations and policies
- New mathematical models for forecasting and planning
Most travellers will give up not only driving but likely also car ownership;
Future of personal mobility

- Most travellers will give up not only driving but likely also car ownership;
- Personal travel will be mostly provided as a public service, operated by driverless cars;
Most travellers will give up not only driving but likely also car ownership;

Personal travel will be mostly provided as a public service, operated by driverless cars;

Traffic congestion will be here to stay (if not becoming worse).
Future of personal mobility

- Most travellers will give up not only driving but likely also car ownership;
- Personal travel will be mostly provided as a public service, operated by driverless cars;
- Traffic congestion will be here to stay (if not becoming worse).

What do we need to get there?
- New strategies for design and operation
- New theories for regulations and policies
- New mathematical models for forecasting and planning
Future of personal mobility

- Most travellers will give up not only driving but likely also car ownership;
- Personal travel will be mostly provided as a public service, operated by driverless cars;
- Traffic congestion will be here to stay (if not becoming worse).

What do we need to get there?

- **New** strategies for design and operation
- **New** theories for regulations and policies
- **New** mathematical models for forecasting and planning
Transportation Network Companies are touted as a strong contender as the future personal travel provider.
Case of Transportation Network Companies

- Transportation Network Companies are touted as a strong contender as the future personal travel provider.

- Car manufacturers and tech giants are busy building partnership with them.
Transportation Network Companies are touted as a strong contender as the future personal travel provider.

Car manufacturers and tech giants are busy building partnership with them.

Uber and Didi Chuxing are valued currently at $68B and $36B, respectively.
Case of Transportation Network Companies

- Uber lost $1.27B in the first half of 2016, and Didi Chuxing lost about $1.6B in 2015 based on some estimation.
Case of Transportation Network Companies

- Uber lost $1.27B in the first half of 2016, and Didi Chuxing lost about $1.6B in 2015 based on some estimation.
- There are signs that TNCs’ expansion in the market has slowed in recent months.
Case of Transportation Network Company

- Uber lost $1.27B in the first half of 2016, and Didi Chuxing lost about $1.6B in 2015 based on some estimation.

- There are signs that TNCs’ expansion in the market has slowed in recent months.

- TNCs’ current business model, built on e-hailing, economy of scale and aggressive pricing, can only go so far (Nie, 2016).
Case of Transportation Network Companies

- TNCs are now betting heavily on driverless cars.
Case of Transportation Network Companies

- TNCs are now betting heavily on driverless cars.
- But can driverless cars solve all the problems?
Case of Transportation Network Companies

- TNCs are now betting heavily on driverless cars.
- But can driverless cars solve all the problems?
- Much greater ride consolidation/sharing must be achieved.
Case of Transportation Network Companies

- TNCs are now betting heavily on driverless cars.
- But can driverless cars solve all the problems?
- Much greater ride consolidation/sharing must be achieved.
- Structured routes must be put in place, along with flexible routes.
CybeR-Enabled Demand Interactive Transit (CREDIT) is a hybrid system integrating flexible routes with structured routes.
CybeR-Enabled Demand Interactive Transit (CREDIT) is a hybrid system integrating flexible routes with structured routes.

- Flexible routes aims to improve last-mile accessibility, linking passengers to structured services.
CybeR-Enabled Demand Interactive Transit (CREDIT) is a hybrid system integrating flexible routes with structured routes.

- Flexible routes aims to improve last-mile accessibility, linking passengers to structured services.
- Flexible routes directly responds to demand, similar to e-hailing.

CREDIT does not guarantee door-to-door service for everyone.

CREDIT is a prototype of futuristic mass transit platforms.
CybeR-Enabled Demand Interactive Transit (CREDIT) is a hybrid system integrating flexible routes with structured routes.

- Flexible routes aims to improve last-mile accessibility, linking passengers to structured services.
- Flexible routes directly responds to demand, similar to e-hailing.
- CREDIT does not guarantee door-to-door service for everyone.
CybeR-Enabled Demand Interactive Transit (CREDIT) is a hybrid system integrating flexible routes with structured routes.

- Flexible routes aims to improve last-mile accessibility, linking passengers to structured services.
- Flexible routes directly responds to demand, similar to e-hailing.
- CREDIT does not guarantee door-to-door service for everyone.

CREDIT is a prototype of **futuristic mass transit platforms**.
The remaining of this talk will focus on hybrid design:

- Hybrid design
- Vehicle routing - sequencing, ride sharing etc.
- Operational strategies - headway control, coordination etc.
- Trip planning - personalized service and pricing
Research agenda

- Hybrid design
- Vehicle routing - sequencing, ride sharing etc.
- Operational strategies - headway control, coordination etc.
- Trip planning - personalized service and pricing

The remaining of this talk will focus on hybrid design
Research question: hybrid design

- What is the best hybrid strategy from a macroscopic perspective?
Research question: hybrid design

- What is the best hybrid strategy from a macroscopic perspective?
- What is the optimal route structure?
Research question: hybrid design

- What is the best hybrid strategy from a macroscopic perspective?
- What is the optimal route structure?
- How to estimate optimal design parameters?
Research question: hybrid design

- What is the best hybrid strategy from a macroscopic perspective?
- What is the optimal route structure?
- How to estimate optimal design parameters?
- How to perform a detailed design based on local characteristics?
Design concepts

- Sketchy design models under idealized conditions

Hybrid design

A continuous approximation approach

First consider a hybrid design called paired-line system. Flexible routes are operated in parallel with paired fixed-route transit lines using smaller vehicles. It only serves passengers whose access distance exceeds certain threshold, which itself is a design parameter.

Conclusions

Nie

Credit
Design concepts

- Sketchy design models under idealized conditions
- A continuous approximation approach
Design concepts

- Sketchy design models under idealized conditions
- A continuous approximation approach
- First consider a hybrid design called paired-line system.
Design concepts

- Sketchy design models under idealized conditions
- A continuous approximation approach
- First consider a hybrid design called paired-line system.
 - Flexible routes are operated in parallel with paired fixed-route transit lines using smaller vehicles.
Design concepts

- Sketchy design models under idealized conditions
- A continuous approximation approach
- First consider a hybrid design called paired-line system.
 - Flexible routes are operated in parallel with paired fixed-route transit lines using smaller vehicles.
 - It only serves passengers whose access distance exceeds certain threshold, which itself is a design parameter.
Design concepts

- Sketchy design models under idealized conditions
- A continuous approximation approach
- First consider a hybrid design called paired-line system.
 - Flexible routes are operated in parallel with paired fixed-route transit lines using smaller vehicles.
 - It only serves passengers whose access distance exceeds certain threshold, which itself is a design parameter.
 - Design of flexible and structured routes is tightly integrated.
Sketchy design model

- Square service area of side length D and street spacing of s.
Sketchy design model

- Square service area of side length D and street spacing of s.
- Demand generation rate λ as a homogeneous spatial Poisson process.
Square service area of side length D and street spacing of s.

Demand generation rate λ as a homogeneous spatial Poisson process.

Structured routes operate in both directions, while flexible routes only operate in one direction.
Square service area of side length D and street spacing of s.

Demand generation rate λ as a homogeneous spatial Poisson process.

Structured routes operate in both directions, while flexible routes only operate in one direction.

Flexible routes serve passengers outside the designed walking area.
Assumptions

- Passengers always use the stops closest to their origin and destination. If the access distance is less than $\beta D/N$ (where $\beta \in (0, 1]$ is a design variable), passengers will choose walking; otherwise, passengers will request e-hailing.
Assumptions

- Passengers always use the stops closest to their origin and destination. If the access distance is less than $\beta D/N$ (where $\beta \in (0, 1]$ is a design variable), passengers will choose walking; otherwise, passengers will request e-hailing.

- Passengers submit their request prior to the desired departure time. Their request will be processed in a first-come-first-serve basis.
Assumptions

- Passengers always use the stops closest to their origin and destination. If the access distance is less than $\beta D/N$ (where $\beta \in (0, 1]$ is a design variable), passengers will choose walking; otherwise, passengers will request e-hailing.
- Passengers submit their request prior to the desired departure time. Their request will be processed in a first-come-first-serve basis.
- Passengers travel between these stations with the least possible number of transfers and as directly as possible.
Assumptions

- Passengers always use the stops closest to their origin and destination. If the access distance is less than $\beta D/N$ (where $\beta \in (0, 1]$ is a design variable), passengers will choose walking; otherwise, passengers will request e-hailing.

- Passengers submit their request prior to the desired departure time. Their request will be processed in a first-come-first-serve basis.

- Passengers travel between these stations with the least possible number of transfers and as directly as possible.

- When transfer is needed, passengers randomly choose the initial direction of travel.
System Cost

- Agency Costs
 - Vehicle Distance
 - Fleet Size
 - Walking

- User Costs
 - Waiting
 - In-vehicle Time
 - Transfer
Formulation for the grid paired-line system

\[\min z(N, H_1, H_2, \beta) \]

\[= \pi Q Q + \pi M M + W + A + T + \frac{\delta}{v_w} e_T \]

s.t. \(H_1 > 0, H_2 > 0 \)

\[N \in \{1, 2, \ldots, \left\lfloor \frac{D}{s} \right\rfloor \} \]

\[0 < \beta \leq 1. \]

where

\(N \) - number of lines;
\(H_1 \) - headway of structured routes;
\(H_2 \) - headway of flexible routes;
\(\beta \) - Walking threshold

are decision variables.

\(\pi Q, \pi M, \delta, v_{c1}, v_{c2} \) are given parameters.

\[Q = Q_1 + Q_2 \frac{4ND}{H_1} + \frac{5ND}{2H_2} + \frac{2p_y \lambda D^3}{3N} \]

\[M = \frac{Q_1}{v_{c1}} + \frac{Q_2}{v_{c2}} \]

\[A = p_n \frac{2l}{v_w} \]

\[W = p_y H_2 + \frac{H_1}{2} \left[1 + \frac{(N - 1)^2}{N^2} \right] \]

\[T = \frac{E_1}{v_{c1}} + \frac{E_2}{v_{c2}} \]

\[E_1 = \frac{0.34D(2N^2 - 2N + 1)}{N^2} ; E_2 = \frac{p_y l_y Q_2 H_2}{ND} \]

\(Q \) - total distance traveled
\(M \) - total fleet size
\(A \) - walking time
\(W \) - waiting time
\(E \) - In-vehicle travel distance
Formulation for the grid paired-line system

\[
\min z(N, H_1, H_2, \beta) = \pi Q Q + \pi M M + W + A + T + \frac{\delta}{v_w} e_T \tag{1}
\]
\[
\text{s.t. } H_1 > 0, H_2 > 0 \tag{2}
\]
\[
N \in \{1, 2, \ldots, \left\lfloor \frac{D}{s} \right\rfloor \} \tag{3}
\]
\[
0 < \beta \leq 1. \tag{4}
\]

where
\[N\] - number of lines;
\[H_1\] - headway of structured routes;
\[H_2\] - headway of flexible routes;
\[\beta\] - Walking threshold
are decision variables.
\[
\pi Q, \pi M, \delta, v_{c1}, v_{c2}\] are given parameters.

\[
\text{where }
\[p_n = \begin{cases} 2\beta^2, & 0 < \beta \leq 0.5, \\ 1 - 2(1 - \beta)^2, & 0.5 < \beta \leq 1. \end{cases} \]
\[
p_y = 1 - p_n \]

is walking probability
\[
e_T = \frac{(N - 1)^2}{N^2} \]

is transfer probability, and
\[
I = \begin{cases} \frac{2\beta D}{3N}, & 0 < \beta \leq 0.5, \\ \frac{3-4(1-\beta)(1+2\beta)}{6-12(1-\beta)^2} \frac{D}{N}, & 0.5 < \beta \leq 1. \end{cases} \]
Alternative hybrid design

Paired-line system

Zone-based system
Alternative hybrid design

Paired-line system

Zone-based system

Which one is better?
Alternative route structure

Radial paired-line with flexible routes running on circular lines.

Area served by demand adaptive lines around the corresponding circular line

θ_r

S_c

R

Fixed transit lines
Demand adaptive lines
Transit stop
Radial paired-line with flexible routes running on radial lines.
Non-hybrid systems

Fixed-route transit system (Daganzo 2010)
Non-hybrid systems

Fixed-route transit system (Daganzo 2010)

Flexible-route transit system (Nourbakhsh & Ouyang 2012)
The optimization problem is solved by Matlab’s built-in genetic algorithm.

Parameters used in the numerical experiments are listed below.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(km)$</td>
<td>0.15</td>
<td>the distance between two adjacent streets (street spacing)</td>
</tr>
<tr>
<td>$\mu($/h)$</td>
<td>20</td>
<td>value of time</td>
</tr>
<tr>
<td>$\tau_1(s)$</td>
<td>12</td>
<td>time lost per stop due to deceleration and acceleration</td>
</tr>
<tr>
<td>$\tau'_1(s)$</td>
<td>1</td>
<td>time added per boarding passenger for fixed-route vehicles</td>
</tr>
<tr>
<td>$\tau_2(s)$</td>
<td>13</td>
<td>additional pick-up and drop-off time required per passenger</td>
</tr>
<tr>
<td>$v(km/h)$</td>
<td>25</td>
<td>vehicles’ cruising speed</td>
</tr>
<tr>
<td>$v_w(km/h)$</td>
<td>2</td>
<td>walking speed</td>
</tr>
<tr>
<td>$\delta(km)$</td>
<td>0.03</td>
<td>transfer penalty expressed in terms of equivalent distance walked</td>
</tr>
<tr>
<td>$Q($/veh \cdot km)$</td>
<td>2</td>
<td>operation cost per vehicle distance</td>
</tr>
<tr>
<td>$M($/veh \cdot h)$</td>
<td>40</td>
<td>operation cost per vehicle hour</td>
</tr>
</tbody>
</table>
Grid paired-line system vs. non-hybrid systems

Cost versus demand levels for \(D = 20\text{km} \)
Sensitivity analysis: inconvenient walking

$v_w = 0.1 \text{ km/h}$
Sensitivity analysis: fast walking

\[v_w = 3 \text{km/h} \]
Sensitivity analysis: high weight of waiting

1 unit of waiting time = 1.8 unit of in-vehicle time
Zone-based vs. line-based: total cost

![Graph showing cost comparison between zone-based and line-based designs]

- **D = 20km**

<table>
<thead>
<tr>
<th>Demand λ (log-scale)</th>
<th>Cost (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>100</td>
<td>1.4</td>
</tr>
<tr>
<td>1000</td>
<td>1.6</td>
</tr>
<tr>
<td>10000</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Zone-based vs. line-based: number of lines

D = 20km

- Line-based
- Zone-based

Number of lines N vs. Demand λ (log-scale)
Zone-based vs. line-based: headway

![Graph showing headway vs. demand for different systems: D = 20km, Line-based Fixed, Line-based E-hailing, Zone-based.](image)
Grid vs. radial: total cost

![Graph showing cost (hour) vs. demand (log-scale) for D = 20km.]

- **Grid**
- **Radial–C–Model**
- **Radial–R–Model**
Grid vs. radial

Maximum walking distance

Total line length
Grid vs. radial

Headway of structured routes

Headway of flexible routes
Grid vs. radial

Agency cost

User cost
NetLogo is a multi-agent programmable modeling environment
NetLogo is a multi-agent programmable modeling environment.

Transit System Simulation Interface developed using NetLogo.
Simulation vs. analysis results

Paired-line system

Zone-based system

D = 20km

Demand λ (log-scale)

Cost (hour)
Simulation vs. analysis results

Radial paired-line system with circular flexible routes

Radial paired-line system with radial flexible routes
Summary of findings

- Hybrid systems clearly outperform traditional transit systems, especially in terms of user costs.
Summary of findings

- Hybrid systems clearly outperform traditional transit systems, especially in terms of user costs.
- The line-based systems outperform the zone-based systems in both agency and user costs;
Summary of findings

- Hybrid systems clearly outperform traditional transit systems, especially in terms of user costs.
- The line-based systems outperform the zone-based systems in both agency and user costs;
- The line-based design features a sparser structured routes but a higher dispatching frequency;
Summary of findings

- Hybrid systems clearly outperform traditional transit systems, especially in terms of user costs.
- The line-based systems outperform the zone-based systems in both agency and user costs;
- The line-based design features a sparser structured routes but a higher dispatching frequency;
- Radial paired-line systems save about 10% system cost for larger networks with relatively high demand; and
Summary of findings

- Hybrid systems clearly outperform traditional transit systems, especially in terms of user costs.
- The line-based systems outperform the zone-based systems in both agency and user costs;
- The line-based design features a sparser structured routes but a higher dispatching frequency;
- Radial paired-line systems save about 10% system cost for larger networks with relatively high demand; and
- Analytical results match simulation results well in grid systems, but tend to overestimate the system cost in radial systems.
Hybrid transit holds promise to improve user experience while operating the system efficiently.
What did we learn?

- Hybrid transit holds promise to improve user experience while operating the system efficiently.
- It personalizes transit services and is well equipped to balance cost and level of service.
What did we learn?

- Hybrid transit holds promise to improve user experience while operating the system efficiently.
- It personalizes transit services and is well equipped to balance cost and level of service.
- Electrification and automation will make novel transit systems like CREDIT much more competitive.
What did we learn?

- Hybrid transit holds promise to improve user experience while operating the system efficiently.
- It personalizes transit services and is well equipped to balance cost and level of service.
- Electrification and automation will make novel transit systems like CREDIT much more competitive.
- Transportation systems analysts have the unique skill set to contribute to the intelligence of such systems.
Where do we go from there?

Future research can further develop:

- Efficient real-time vehicle routing;
Where do we go from there?

Future research can further develop:

- Efficient real-time vehicle routing;
- Coordination and control strategies;
Where do we go from there?

Future research can further develop:

- Efficient real-time vehicle routing;
- Coordination and control strategies;
- Personalized service and pricing;
Where do we go from there?

Future research can further develop:
- Efficient real-time vehicle routing;
- Coordination and control strategies;
- Personalized service and pricing;
- A high-fidelity, high-performance simulation platform
Thank you for listening!

Acknowledgement

