

Ecole des sciences de la gestion Université du Québec à Montréal

Tactical Network Planning for Food Aid Distribution in Kenya

M.-È. Rancourt, J.-F. Cordeau, G. Laporte and B. Watkins, Computers & Operations Research, 56: 68-83, 2015

Transportation Center Seminar

Northwestern's McCormick School of Engineering and Applied Science March 5, 2015

Marie-Ève Rancourt, Ph.D. Department of Management and Technology, ESG UQÀM

Outline

Context: humanitarian logistics

The network design problem
Field work and data collection
Mathematical formulation

Results

Conclusions and future research directions

Humanitarian logistics

The process of planning, implementing and controlling the efficient, cost-effective flow and storage of goods and materials, as well as related information, from the point of origin to the point of consumption for the purpose of <u>meeting the end</u>

beneficiaries' requirements

A. Thomas and M. Mizushima (2011)

L'humanitaire, c'est de la logistique

Coordination, centrale d'achat, coopération sur le terrain: les ONG s'organisent pour rendre leur action plus efficace.

Humanitarian logistics Disaster response versus development projects

Disaster response

- The Federal Emergency Management Agency (FEMA) defines a disaster as:
 - « an event that causes 100 deaths or 100 human injuries or damage worth 1 million dollars »

Development projects

- Also involve human suffering and economic damage, but covering longer time-spans
- Their cause can usually not be traced back to a specific catastrophic event

East Africa struggles with...

- Extreme poverty and rapid population growth
- Wars and population migrations
- Diseases (malaria, HIV/AIDS, ...)
- Gender issues and lack of education
- Governance challenges
- Fragile food production systems
- Recurrent droughts and floods
- Food insecurity

Food insecurity

- Hunger and malnutrition are the greatest risks to global health (World Food Programme, UN)
- Eradicating extreme poverty and hunger is the first goal of the eight UN Millennium Development Goals
- Sub-Saharan Africa is the only region in the world suffering from persistent chronic food insecurity

Food aid as an instrument to reduce food insecurity

Food aid

- Providing food and related assistance to tackle hunger, either in emergency situations, or to help with deeper, longer term hunger alleviation and achieve food security
- This project focuses on inkind food donations to beneficiaries

Kenya

- Between 1988 and 2011
 - 182,000 MT per year on average (FAO)
- Number of beneficiaries
 - 14.3 million people in 2013-2014
- Main causes
 - Poverty
 - Seasonal droughts
 - Refugee camps (about 480,000 refugees in Dadaab and Kakuma)

Objective of this project

- Objective: Improve the design of the food aid distribution network taking into account the welfare of multiple stakeholders
- Scope: Determination of final delivery points, last-mile of food aid distribution
- Methodology: Mathematical programming
 - Problem class: Facility location and coverage problems
- **Geographical coverage:** Garissa district, Kenya

Collaboration

- The World Food Programme (WFP) of the United Nations
 - The largest humanitarian agency, aims to fight against hunger in the world
 - Know-how in the areas of food security analyses, nutrition, food procurement and logistics (transportation and warehousing)
- Kenya Red Cross
 - Run different projects (services): famine, education, blood, first aid, disaster and emergency

Scientific contributions

- The main challenge of the project lies more in modeling the problem, carrying out data collection and processing, and performing analyses than on algorithmic development
- Describe the logistics processes of food aid distribution and estimate stakeholders' costs
- First paper to apply optimization tools using real data in the context of last-mile food aid distribution in Africa and computing stakeholders' tradeoff costs

Steps

- 1. Understand the food distribution process
- 2. Determine the network parameters
 - Demand
 - Potential FDP locations
 - Distances
- 3. Estimate the stakeholder cost functions
 - Beneficiaries
 - World Food Programme (WFP)
 - Kenya Red Cross
- 4. Formulate and solve the mathematical models
- 5. Estimate tradeoffs

Step 1: Understanding the food distribution process

Field work

- Interviews
- Facility visits
- Food distribution observation

Food distribution process

Food aid regional supply chain Operations and stakeholders

Stakeholders

Why Garissa and its surroundings?

One of the most vulnerable regions in Kenya

- 35% of the region's population received food aid in the last 12 years (62% during the most difficult period)
- High poverty rate
- Arid land with low rainfall
- Pastoralism is the dominant livelihood system

Food aid is constant

Fixed distribution system which justifies the need for an optimized network

Activities/Responsibilities at the EDP and a FDPs

Activities/Responsibilities at a FDP

- "Community Relief Committee"
 - Elected by the community
 - Trained by Red Cross
 - Targeting, record keeping, arrange food distribution, provide storage and ensure security

Red Cross

- Ensure that food assistance reaches beneficiaries
- Assist the community

Activities/Responsibilities at a FDP

Activities/Responsibilities at a FDP

Shipment management

- Counting
- Signing waybill
- Losses/damaged bags

Activities at a FDP

- Distribution
 - "Scooping"
 - Hand-out (distribution)
 - Donkey transportation service

Tactical "FDP" location problem

Nodes:

Population points (\mathcal{V}_{l}) Potential FDP locations (\mathcal{V}_{2})

Costs:

- Transportation costs (WFP)
- Location and hand-out costs (Kenya Red Cross)
- Access costs (beneficiary opportunity costs)

Step 2: Determine the physical network structure

1. Demand

- Population needs
- Population locations
- 2. Potential FDP locations
- 3. Transportation network (distances)
 - Distance from each population point to closest road
 - Distance from Garissa EDP to each potential FDP locations
 - Distance from each population points to each potential FDP locations

Question 1 – Demand

Where are the beneficiaries?

Geographic Information Systems (GIS) and gridded population data

How much food are they entitled to?

> 2012 Short Rain Need Assessment

Need assessment in Kenya

Need assessment: Determination of the <u>demand</u> for the following 6 months.

Need assessment in Kenya

- For each division of Kenya, two parameters are determined (effective for a period of 6 months):
 - Number of beneficiaries
 - Ration entitlement

60g of pulses

15g of sugar

Blend)

(# beneficiaries, ration entitlement)

2012 Short Rain Assessment for Garissa and its surroundings

Food aid requirement (tonnes/month)

food aid per beneficiary at smallest division level

Question 2 – Potential FDP locations

Where are the potential FDP locations?

- Geographic Information Systems (GIS)
 - Road network
 - Population data

Question 3 – Transportation distances

What are the network transportation distances?

- Geographic Information Systems (GIS)
 - Road network
 - Population data
- > Algorithms

Distances within the network

- Garissa EDP to each potential FDP
 - Road distances
 - Source: Google maps API
 - 1460 distances
- Each population point to each potential FDP
 - Geographical distances

Garissa

EDP

- Source: GIS
- > 35,701,380 distances

Network description

Description	Parameter	Mean	Std dev.	Median	Min.	Max.
Population nodes $(V_1 = 24, 453)$	V_1					
Number of people	p_i	17.36	221.15	5	3	13,793
Six-month food need per beneficiary (t)	q_i	0.02438	0.02442	0.01136	0.0396	0.11534
Geographical distance to closest route (km)	$d_i^{r^*}$	11.03	9.34	8.49	0	50.34
Geographical distance to closest potential DC $\left(\mathrm{km}\right)$	$d^g_{ij^{\star}}$	11.85	10.91	8.71	0	54.48
Potential DC nodes $(V_2 = 1, 460)$	V_2					
Road distance to MW (km)	d^r_{0j}	106.32	71.41	107.16	0.05	268.93

Step 3: Estimate the stakeholder costs

Stakeholders that bear costs

- Beneficiary opportunity costs (access costs)
- WFP (transportation costs)
- Kenya Red Cross (location and hand-out costs)

Data sources

- Beneficiary questionnaires
- Contracts between the WFP and the Kenya Red Cross

Beneficiary opportunity costs

Value of walking time:

0.25 h/km · 2 · distance to FDP (km) · 22,25 KSh/h Walking time (pace: 4 km/h) Minimum wage rate for unskilled labor

Value of food transport service (donkey):

20 KSh + 2.5 KSh/km · distance to FDP (km)

Statistics based on a monitoring report for WFP

Beneficiary opportunity costs:

 $_{11,4}$ KSh/km \cdot distance to FDP (d_{ii}), + 20 KSh

Transportation costs (WFP)

The Red Cross contracts and coordinates with local transporters, but WFP fixes secondary transportation rates and pays for the services:

$$\beta_j = \begin{cases} c_0 & \text{if } d_{0j}^r \in [0, \bar{d}_0] \\ c_1 d_{0j}^r & \text{if } d_{0j}^r \in (\bar{d}_0, \bar{d}_1] \\ c_2 d_{0j}^r & \text{if } d_{0j}^r > \bar{d}_1. \end{cases}$$

 c_0 : constant price per tonne c_1, c_2 : constant price per km-tonne

Transportation costs to serve the FDPs depend on the distance and the quantity of food delivered

Location and hand-out costs (Kenya Red Cross)

- Fixed costs: Relief comity training and registration validation
 - Two workdays for the Red Cross facilitator
- Variable costs: Monthly food distribution monitoring
 - Two workdays per month for the Red Cross staff (announcement, dispatch and distribution)

Step 4: Mathematical formulation of the problem

- Define the decision variables
- Determine the objective function
- Formulate the constraints

Decision variables and coverage radius

- Decision variables
 - y_j : is equal to 1 if FDP j is selected, 0 otherwise $(j \in V_2)$
 - x_{ij} : proportion of the needs of population i served by FDP j $(i \in V_1(r))$ and $(j \in W_i(r))$
- **\square** Radius of coverage r and $W_{i}(r)$

Mathematical formulation – Cost Model

Step 5: Computational results

Solve the problem using the CPLEX 12.5 library in a C++ program

Optimality gap: 0.1%

Comparative analyses

- Impact of the response system structure on the stakeholder welfare costs
- Compare results of the cost model with classic covering models

Solution illustrations

(a) Solution with r = 5 km.

(b) Solution with r = 55 km.

Solution characteristics

Solution	Costs			DCs	Covered people	Uncovered people		CPLEX	
r	Total	Beneficiary	Supply	Hand-out	#	Average walk	Proportion	Average walk	CPU time
(km)	(KSh)	(KSh)	(KSh)	(KSh)		time (h)	(%)	time (h)	(s)
5	39,564,680	$2,\!659,\!196$	31,299,708	5,605,776	264	0.88	19.94	8.33	4,312.3
10	38,260,488	$3,\!921,\!704.3$	$31,\!005,\!046$	3,333,738	157	1.43	13.75	10.37	80.9
12	38,099,196	$4,\!401,\!085$	$30,\!852,\!754$	$2,\!845,\!356$	134	1.63	11.90	11.11	338.36
17	38,314,480	$5,\!842,\!935$	$30,\!241,\!976$	2,229,570	105	2.21	7.67	13.18	203.41
25	38,863,984	7,853,155	$29,\!248,\!408$	1,762,422	83	3.01	3.62	16.50	173.75
55	39,449,296	10,767,909	27,322,410	$1,\!358,\!976$	64	4.15	0	0	$1,\!228.85$

Covered people as a function of the coverage radius

Uncovered people as a function of the coverage radius

Stakeholder costs

Stakeholder costs per beneficiary

Fair and costefficient solutions obtained with: r = 10, 11, ..., 17.

Fair?

Complying with The Sphere Project Standards (2014), i.e. 90% of the beneficiaries should be covered within a one-day return walk .

Here, about 92% of the people are covered with an average walking time of 2 hours.

Tradeoff between beneficiary and transportation costs

Minimizing beneficiary opportunity costs

 Average % of decrease in average walking time per beneficiary

37%

Average % of increase in transportation costs

14%

Minimizing supply transportation costs (WFP)

Average % of decrease in transportation costs

15%

Average % of increase in beneficiary average walking time

188%

A small increase in WFP costs can yield a large reduction in beneficiary opportunity costs

Coverage Model

Maximize covered need with 156 FDPs

maximize $\sum q_i z_i$ $i \in V_1(r)$ subject to $z_i \leq \sum y_j \quad i \in V_1(r)$ $j \in W_i(r)$ $\sum y_j = \bar{w}$ $j \in V_2$ $0 \leq z_i \leq 1$ $i \in V_1(r)$ $y_j \in \{0,1\}$ $j \in V_2$.

Comparative analysis – Coverage

Comparison of the % of covered people obtained with the cost model and the coverage model with 156 FDPs

Less covered people when $r \leq 10$

Comparative analysis – Stakeholder costs

Comparison of the stakeholder costs obtained with the cost model and the coverage model with 156 FDPs

Larger beneficiary and WFP costs for all *r*, but similar cost when *r* = 10 km

Conclusions

- Defined a framework to optimize food aid distribution networks (FDP locations)
- Highlighted the importance of valuing the beneficiaries' time
- Found transportation costs to be the largest costs
- Found that, taking beneficiary opportunity costs into account, a relatively low value of r minimizes total costs

Next steps:

How to design food aid supply chains that will lead to a more sustainable response and favour long-term economic growth?

Emerging aid systems Sustainable food security and resilient supply chains

« Cash and Vouchers »

- Cash transfers provide money to people who are struggling to provide food to their families
- Vouchers can be redeemed for food items or « spent » in selected shops

« Local purchase »

WFP purchases locally in developing countries in its criteria of price, quality and quantity can be met

« Purchase for Progress »

- Test new procurement approaches best suited for small producers
- Support farmers to get better yields, reduce losses, improve the quality of their crops and connect them to markets

Future research

- Dynamic and stochastic problem at the national level
- Procurement:
 - International
 - Local
- Two type of commodities
 - Food
 - Cash & vouchers
- Effect on local markets and food production
- Stakeholders
 - WFP and Kenya Red Cross
 - Beneficiaries
 - Local producers and traders
 - Non beneficiaries

Discussion

Questions and discussion...

