Intro

Risk Measures

Data Uncertainty

Behavioral Uncertainty

Uncertainty in Hazardous Materials Transportation

Changhyun Kwon

Department of Industrial & Systems Engineering University at Buffalo, SUNY

May 7, 2015

C Kwon

1/54

1 Introduction

- 2 Risk Measures
- **3** Data Uncertainty
- **4** Behavioral Uncertainty

C Kwon

1 Introduction

- 2 Risk Measures
- **3** Data Uncertainty
- 4 Behavioral Uncertainty

C Kwon

Intro

Data Uncertaint

Behavioral Uncertainty

Hazardous Materials

Hazardous Materials (hazmat), Dangerous Goods

Hazmat transportation

- Number of accidents is small compared to the number of shipments
- Consequence is very severe in terms of fatalities, injuries, large-scale evacuation and environmental damage

Intro		Data Uncertainty	
Introductio	on		

Table: 2014 Hazmat Summary by Transportation Phase ¹

Transportation Phase	Incidents	Hospitalized	Non-Hospitalized	Fatalities	Damages
In Transit	4,190	2	53	5 5	\$63,686,925
In Transit Storage	614	1	1	0	\$1,629,889
Loading	3,262	3	20	0	\$1,021,289
Unloading	8,149	5	47	1	\$3,848,737
Unreported	1	0	0	0	\$0
Unreported	1	0	0	0	\$0

 $^1\mbox{Hazmat}$ Intelligence Portal, US Department of Transportation. C Kwon

Introduction

Table: Hazmat Shipment Tonnage Shares by Mode in 2007²

Mode of Transportation	Percentage	of Tons
Truck	53.9%	5-
Pipeline	28.2%	
Water	6.7%	
Rail	5.8%	
Multiple modes	5.0%	
Other and unknown modes	0.4%	

²Research and Innovative Technology Administration and US Census Bureau, 2007 Commodity Flow Survey, Hazardous Materials

Data Uncertainty

Three Types of Uncertainty

Where will be the accident location? Probabilistic nature of traffic accident How large will be the accident consequence Data uncertainty How do hazmat carriers determine routes? Behavioral uncertainty

(1), (2): Risk Measures
 (2), (3): Robustness

Data Uncertainty

Three Types of Uncertainty

- Where will be the accident location?
 Probabilistic nature of traffic accident
 How large will be the accident consequence?
 Data uncertainty
 How do hazmat carriers determine routes?
 Behavioral uncertainty
- (1), (2): Risk Measures
- (2), (3): Robustness

Data Uncertainty

Three Types of Uncertainty

- Where will be the accident location?

 Probabilistic nature of traffic accident

 How large will be the accident consequence?

 Data uncertainty

 How do hazmat carriers determine routes?

 Behavioral uncertainty
- (1), (2): Risk Measures
- (2), (3): Robustness

- 3 Data Uncertainty
- 4 Behavioral Uncertainty

C Kwon

Intro

Risk Measures

Data Uncertainty

Hazmat Transportation Network

- $G = (\mathcal{N}, \mathcal{A})$ a road network
- *N* is the node set and *A* is the arc set.
- p_{ij} accident probability on arc $(i, j) \in \mathcal{A}$.
- c_{ij} accident consequence of traveling on arc $(i,j) \in A$.

ntro Risk Measures Data Uncertainty Behavioral Uncertainty

ntro Risk Measures Data Uncertainty Behavioral Uncertainty

Model	Risk Measure	Function
TR	Expected Risk	$\min_{l\in\mathcal{D}} \sum_{p_{ij}c_{ij}}$
PE	Population Exposure	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^{l}}^{(i,j) \in \mathcal{A}^{l}} c_{ij}$

tro Risk Measures Data Uncertainty Behavioral Uncertaint

Model	Risk Measure	Function
TR	Expected Risk	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} p_{ij} c_{ij}$
PE	Population Exposure	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} c_{ij}$
IP	Incident Probability	$\min_{l\in\mathcal{P}}\sum_{(i,j)\in\mathcal{A}^l}^{\prime} p_{ij}$

ro **Risk Measures** Data Uncertainty Behavioral Uncertainty

Risk Measure	Function	
Expected Risk	$\min_{l \in \mathcal{P}} \sum_{(i,i) \in A^l} p_{ij} c_{ij}$	
Population Exposure	$\min_{l\in\mathcal{P}}\sum_{(i,j)\in\mathcal{A}}^{(i,j)\in\mathcal{A}}c_{ij}$	
Incident Probability	$\min_{l\in\mathcal{P}}\sum_{i=1}^{(I,J)\in\mathcal{A}^{\prime}}p_{ij}$	
Perceived Risk	$\min_{l\in\mathcal{P}}\sum_{(i,j)\in\mathcal{A}^{l}}^{(i,j)\in\mathcal{A}^{l}}p_{ij}(c_{ij})^{q}$	
	Risk Measure Expected Risk Population Exposure Incident Probability Perceived Risk	Risk MeasureFunctionExpected Risk $\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} p_{ij}c_{ij}$ Population Exposure $\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} c_{ij}$ Incident Probability $\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} p_{ij}$ Perceived Risk $\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} p_{ij}(c_{ij})^q$

Model	Risk Measure	Function
MM	Maximum Risk	$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{A}^l} c_{ij}$
		123
		NALZON
won		12/5

tro Risk Measures Data Uncertainty Behavioral Uncertainty

Model	Risk Measure	Function
MM	Maximum Risk	$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{A}^l} c_{ij}$
ΜV	Mean-Variance	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l}^{S} (p_{ij}c_{ij} + kp_{ij}(c_{ij})^2)$

Model	Risk Measure	Function
MM	Maximum Risk	$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{A}^l} c_{ij}$
MV	Mean-Variance	$\min_{l \in \mathcal{P}} \sum_{(i,i) \in \mathcal{A}^l} (p_{ij} c_{ij} + k p_{ij} (c_{ij})^2)$
DU	Disutility	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l} p_{ij}(\exp(kc_{ij}-1))$
won		12/54

tro Risk Measures Data Uncertainty Behavioral Uncertainty

Model	Risk Measure	Function
MM	Maximum Risk	$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{A}^l} c_{ij}$
MV	Mean-Variance	$\min_{l \in \mathcal{P}} \sum_{(i, i) \in A^l} (p_{ij}c_{ij} + kp_{ij}(c_{ij})^2)$
DU	Disutility	$\min_{l \in \mathcal{P}} \sum_{(i,j) \in \mathcal{A}^l}^{(i,j) \in \mathcal{A}} p_{ij}(\exp(kc_{ij}-1))$
CR	Conditional Probability	$\min_{l \in \mathcal{P}} \left(\sum_{(i,j) \in \mathcal{A}^l} p_{ij} c_{ij} \middle/ \sum_{(i,j) \in \mathcal{A}^l} p_{ij} \right)$

Data Uncertainty

Behavioral Uncertainty

Value-at-Risk (VaR) in Hazmat Problem³

• Cutoff Risk β'_{α} for path I such that

• the probability of a shipment experiencing a greater risk than β'_{α} is less than confidence level α

$$VaR'_{\alpha} = \min\{\beta : \Pr(R' > \beta) \le 1 - \alpha\}$$

• VaR = 100 at $\alpha = 99\%$: With probability 99%, risk is less than 100.

Risk of a path 1:

$$R^{I} = \begin{cases} 0, & \text{w.p.} \\ C_{1}, & \text{w.p.} \\ \vdots \\ C_{\overline{m}^{I}}, & \text{w.p.} \end{cases} p_{\overline{m}}$$

C Kwon⁸ Kang Y R Batta and C Kwon (2014) "Value-at-Risk Model for Hazardous Material Transportation" 13/54

Data Uncertainty

Value-at-Risk (VaR) in Hazmat Problem³

• Cutoff Risk β'_{α} for path I such that

• the probability of a shipment experiencing a greater risk than β'_{α} is less than confidence level α

$$VaR'_{lpha} = \min\{eta: \Pr(R' > eta) \leq 1 - lpha\}$$

• VaR = 100 at $\alpha = 99\%$: With probability 99%, risk is less than 100.

Risk of a path I:

$$R' = \begin{cases} 0, & \text{w.p.} \\ C_1, & \text{w.p.} \\ \vdots \\ C_{\overline{m}'}, & \text{w.p.} \\ P_{\overline{m}} \end{cases} p_i$$

C Kwori⁸ Kang Y R Batta and C Kwon (2014) "Value-at-Risk Model for Hazardous Material Transportation" 13/54

Data Uncertainty

Value-at-Risk (VaR) in Hazmat Problem³

• Cutoff Risk β'_{α} for path I such that

• the probability of a shipment experiencing a greater risk than β'_{α} is less than confidence level α

$$VaR'_{lpha} = \min\{eta : \Pr(R' > eta) \le 1 - lpha\}$$

• VaR = 100 at $\alpha = 99\%$: With probability 99%, risk is less than 100.

Risk of a path I:

$$R' = \begin{cases} 0, & \text{w.p.} & 1 & \overrightarrow{p_i} \\ C_1, & \text{w.p.} & p_1 & \vdots \\ \vdots & & \\ C_{\overline{m}'}, & \text{w.p.} & p_{\overline{m}} & \vdots \end{cases}$$

C Kwon⁸ Kang Y R Batta and C Kwon (2014) "Value-at-Risk Model for Hazardous Material Transportation" 13/54

Data Uncertainty

Value-at-Risk (VaR) in Hazmat Problem³

• Cutoff Risk β'_{α} for path I such that

• the probability of a shipment experiencing a greater risk than β'_{α} is less than confidence level α

$$VaR'_{lpha} = \min\{eta : \Pr(R' > eta) \le 1 - lpha\}$$

• VaR = 100 at $\alpha = 99\%$: With probability 99%, risk is less than 100.

Risk of a path I:

$$R' = \begin{cases} 0, & \text{w.p.} \quad 1 - \sum_{i=1}^{\overline{m}'} p_i \\ C_1, & \text{w.p.} \quad p_1 \\ \vdots \\ C_{\overline{m}'}, & \text{w.p.} \quad p_{\overline{m}'} \end{cases}$$

C Kwori[®] Kang Y R Batta and C Kwon (2014) "Value-at-Risk Model for Hazardous Material Transportation" 13/54

Intro Risk Measures Data Uncertainty Behavioral Uncertainty

Risk Preference with VaR

Confidence Level α	0	\longrightarrow	1
Risk Attitude	Risk Indifferent	\longrightarrow	Risk Averse
Equivalent	-		Min-Max Model
Model	-		$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{P}'} C_{(i,j)}$

Sufficiently small lpha can be as large as 0.999977 in hazmat routing

Intro Risk Measures Data Uncertainty Behavioral Uncertainty

Risk Preference with VaR

Confidence Level α	0	\longrightarrow	1	
Risk Attitude	Risk Indifferent	\longrightarrow	Risk Averse	
Equivalent	_		Min-Max Model	
Model	-		$\min_{l \in \mathcal{P}} \max_{(i,j) \in \mathcal{P}^l} C_{(i,j)}$	

Sufficiently small α can be as large as 0.999977 in hazmat routing.

Data Uncertainty

VaR vs Conditional Value-at-Risk (CVaR)

ntro

Risk Measures

Data Uncertainty

Behavioral Uncertainty

Risk Preference with CVaR

Confidence Level α	0	\rightarrow	1
Risk Attitude	Risk Neutral	\rightarrow	Risk Averse
Equivalent Model	Traditional Risk Model $\min_{l \in \mathcal{P}} \mathbb{E}[R^{l}]$		$\begin{array}{c} Min-Max\;\;Model\\ \min_{l\in\mathcal{P}}\;\max_{(i,j)\in\mathcal{P}^{l}}c_{ij} \end{array}$

CVaR Defined

■ For a path *l* ∈ *P* at the confidence level α, the CVaR is defined as:

$$\begin{aligned} \mathsf{CVaR}_{\alpha}^{\prime} &= \lambda_{\alpha}^{\prime}\mathsf{VaR}_{\alpha}^{\prime} + (1 - \lambda_{\alpha}^{\prime})\mathbb{E}[R^{\prime} : R^{\prime} > \mathsf{VaR}_{\alpha}^{\prime}] \\ \text{where } \lambda_{\alpha}^{\prime} &= \left(\mathsf{Pr}[R^{\prime} \leq \mathsf{VaR}_{\alpha}^{\prime}] - \alpha\right) \big/ (1 - \alpha). \end{aligned}$$

 Hard to be considered in an optimization problem format mainly due to conditioning.

Auxiliary Form

Following Rockafellar and Uraysev (2000), we consider the following function:

$$egin{aligned} \Phi_lpha^{\prime}(m{v}) &= m{v} + rac{1}{1-lpha} \mathbb{E}[R^{\prime}-m{v}]^+ \ &pprox m{v} + rac{1}{1-lpha} \sum_{(i,j)\in\mathcal{A}^{\prime}} p_{ij}[c_{ij}-m{v}]^- \end{aligned}$$

where we denote $[x]^+ = \max(x, 0)$.

Then, we can show that the CVaR minimization is equivalent to minimize Φ'_{α} by choosing a path $\in P$ at the confidence level α . That is,

$$\min_{l\in\mathcal{P}} CVaR_{\alpha}^{l} = \min_{l\in\mathcal{P}, v\in\mathbb{R}^{+}} \Phi_{\alpha}^{l}(v)$$

Auxiliary Form

Following Rockafellar and Uraysev (2000), we consider the following function:

$$egin{aligned} \Phi_lpha^{\prime}(m{v}) &= m{v} + rac{1}{1-lpha} \mathbb{E}[R^{\prime}-m{v}]^+ \ &pprox m{v} + rac{1}{1-lpha} \sum_{(i,j)\in\mathcal{A}^{\prime}} m{p}_{ij}[m{c}_{ij}-m{v}]^- \end{aligned}$$

where we denote $[x]^+ = \max(x, 0)$.

Then, we can show that the CVaR minimization is equilvalent to minimize Φ^I_α by choosing a path I ∈ P at the confidence level α. That is,

$$\min_{l\in\mathcal{P}} CVaR_{\alpha}^{l} = \min_{l\in\mathcal{P}, v\in\mathbb{R}^{+}} \Phi_{\alpha}^{l}(v)$$

Data Uncertainty

A Computational Method for CVaR Minimization

• $v^* \in \{0\} \cup \{c_{ij} : (i,j) \in \mathcal{A}\}$

- A shortest-path algorithm (like Dijkstra's) for solving the sub-problem.
- $|\mathcal{A}| + 1$ number of shortest-path problems.
- C. Kwon (2011), "Conditional Value-at-Risk Model for Hazardous Materials Transportation", in Proceedings of the 2011 Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds. pp. 1708-1714
- Tournazis, I., C. Kwon, and R. Batta (2013), "Value-at-Risk and Conditional Value-at-Risk Minimization for Hazardous Materials Routing", in Handbook of OR/MS Models in Hazardous Materials Transportation (Eds.:R. Batta and C. Kwon), Springer
- Toumazis, I. and C. Kwon (2013), "Routing Hazardous Materials on Time-Dependent Networks using Conditional Value-at-Risk", Transportation Research Part C: Emerging Technologies, 37, 7392.

	Data Uncertainty	
Outline		

1 Introduction

- 2 Risk Measures
- **3** Data Uncertainty
- 4 Behavioral Uncertainty

- Accident Probability: data is usually unavailable.
- Accident Consequence: any measure is hard to quantify and subject to uncertainty.
- Need a robust method for data uncertainty.

Shortest Path Problem

For a graph $G(\mathcal{N}, \mathcal{A})$, to find a path with the least path cost.

$$\min_{x\in\Omega}\sum_{(i,j)\in\mathcal{A}}c_{ij}x_{ij}$$

where

$$\Omega \equiv \Big\{ x : \sum_{(i,j)\in\mathcal{A}} x_{ij} - \sum_{(j,i)\in\mathcal{A}} x_{ji} = b_i \quad \forall i \in \mathcal{N}, \Big\}$$

and $x_{ij} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}$

Dijkstra's Algorithm $O(|\mathcal{N}|^2)$

C Kwon

Robust Shortest Path Problem

The cost coefficient *c* may be subject to some uncertainty.

$$\min_{x\in\Omega}\sum_{(i,j)\in\mathcal{A}}\tilde{c}_{ij}x_{ij}$$

The uncertain \tilde{c} belongs to an uncertain set C.

$$\min_{x \in \Omega} \max_{\tilde{c} \in C} \sum_{(i,j) \in \mathcal{A}} \tilde{c}_{ij} x_{ij}$$

The robust shortest path problem is to find a path that minimizes the worst-case path cost.

Data Uncertainty

Two Mulplicative Cost Coefficients⁴

Nominal Problem

$$\min_{x\in\Omega}\sum_{(i,j)\in\mathcal{A}}p_{ij}c_{ij}x_{ij}$$

Uncertain Problem

$$\min_{x\in\Omega}\sum_{(i,j)\in\mathcal{A}}\tilde{p}_{ij}\tilde{c}_{ij}x_{ij}$$

Robust Problem

$$\min_{x \in \Omega} \max_{\tilde{p}, \tilde{c}} \sum_{(i,j) \in \mathcal{A}} \tilde{p}_{ij} \tilde{c}_{ij} x_{ij}$$

⁴Kwon, C., T. Lee, P. G. Berglund (2013), "Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients", *Naval Research Logistics*, 60(5), 375394

Intr

Risk Measures

Data Uncertainty

25/54

Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients

$$\min_{x\in\Omega}\max_{u\in U, v\in V}\sum_{(i,j)\in\mathcal{A}}(p_{ij}+q_{ij}u_{ij})(c_{ij}+d_{ij}v_{ij})x_{ij}$$

where

$$egin{aligned} U &= igg\{ u: 0 \leq u_{ij} \leq 1 \quad orall(i,j), \quad \sum_{(i,j)} u_{ij} \leq \Gamma_u igg\} \ V &= igg\{ v: 0 \leq v_{ij} \leq 1 \quad orall(i,j), \quad \sum_{(i,j)} v_{ij} \leq \Gamma_v igg\} \end{aligned}$$

and Γ_u and Γ_v are positive integers.

The objective function can be written as follows:

 $\min_{\mathbf{C} \in \mathbf{K} \text{woh}^{\in \Omega}} \left[p_{ij} c_{ij} x_{ij} + \max_{u \in U, v \in V} (q_{ij} c_{ij} x_{ij} u_{ij} + p_{ij} d_{ij} x_{ij} v_{ij} + q_{ij} d_{ij} x_{ij} u_{ij} v_{ij} \right]$

Data Uncertainty

Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients

$$\min_{x\in\Omega}\max_{u\in U,v\in V}\sum_{(i,j)\in\mathcal{A}}(p_{ij}+q_{ij}u_{ij})(c_{ij}+d_{ij}v_{ij})x_{ij}$$

where

$$U = \left\{ u : 0 \le u_{ij} \le 1 \quad \forall (i,j), \quad \sum_{(i,j)} u_{ij} \le \Gamma_u \right\}$$
$$V = \left\{ v : 0 \le v_{ij} \le 1 \quad \forall (i,j), \quad \sum_{(i,j)} v_{ij} \le \Gamma_v \right\}$$

and Γ_u and Γ_v are positive integers. The objective function can be written as follows:

 $\min_{\mathbf{C} \text{ Kwoh} \in \Omega} \left[p_{ij} c_{ij} x_{ij} + \max_{u \in U, v \in V} (q_{ij} c_{ij} x_{ij} u_{ij} + p_{ij} d_{ij} x_{ij} v_{ij} + q_{ij} d_{ij} x_{ij} u_{ij} v_{ij}) \right]_{25/5}$

Intro

Intro Risk Measures Data Uncertainty Behavioral Uncertainty

Mixed Integer Linear Program

min
$$p_{ij}c_{ij}x_{ij} + \Gamma_u\theta_u + \Gamma_v\theta_v + \sum_{(i,j)}(\rho_{ij} + \mu_{ij})$$

subject to

 $\begin{aligned} x \in \Omega \\ \rho_{ij} - \eta_{ij} + \theta_u &\geq q_{ij}c_{ij}x_{ij} \\ \mu_{ij} - \pi_{ij} + \theta_v &\geq p_{ij}d_{ij}x_{ij} \\ \eta_{ij} + \pi_{ij} &\geq q_{ij}d_{ij}x_{ij} \\ \rho_{ij}, \mu_{ij}, \eta_{ij}, \pi_{ij}, \theta_u, \theta_v &\geq 0 \end{aligned}$

Solution of the Dual Problem

A solution to the dual problem for any given x is:

$$\begin{split} \rho_{ij} &= \max(q_{ij}c_{ij}x_{ij} - \theta_u + \eta_{ij}, 0) \\ &= \max(q_{ij}c_{ij}x_{ij} + q_{ij}d_{ij}x_{ij} - \min(q_{ij}d_{ij}x_{ij}, \max(\theta_v - p_{ij}d_{ij}x_{ij}, 0)) \\ &\quad - \theta_u, 0) \\ \mu_{ij} &= \max(p_{ij}d_{ij}x_{ij} - \theta_v + \pi_{ij}, 0) \\ &= \max(p_{ij}d_{ij}x_{ij} + \min(q_{ij}d_{ij}x_{ij}, \max(\theta_v - p_{ij}d_{ij}x_{ij}, 0)) - \theta_v, 0) \end{split}$$

C Kwon

27/54

	Data Uncertainty	

Lemma

The sum $\rho_{ij} + \mu_{ij}$ can be expressed as follows:

$$\rho_{ij} + \mu_{ij} = \begin{cases} 0 \cdot x_{ij} \\ \text{if } \theta_u \ge q_{ij}c_{ij}, \ \theta_v \ge p_{ij}d_{ij} + q_{ij}d_{ij} \\ \text{or } p_{ij}d_{ij} \le \theta_v \le p_{ij}d_{ij} + q_{ij}d_{ij}, \ \theta_u + \theta_v \ge p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij} \\ (q_{ij}c_{ij} - \theta_u)x_{ij} & \text{if } \theta_u \le q_{ij}c_{ij}, \theta_v \ge p_{ij}d_{ij} + q_{ij}d_{ij} \\ (p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij} - \theta_u - \theta_v)x_{ij} \\ \text{if } p_{ij}d_{ij} \le \theta_v \le p_{ij}d_{ij} + q_{ij}d_{ij}, \ \theta_u + \theta_v \le p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij} \\ \text{or } \theta_u \le q_{ij}c_{ij} + q_{ij}d_{ij}, \theta_v \le p_{ij}d_{ij} \\ (p_{ij}d_{ij} - \theta_v)x_{ij} & \text{if } \theta_u \ge q_{ij}c_{ij} + q_{ij}d_{ij}, \theta_v \le p_{ij}d_{ij} \end{cases}$$

for each $(i,j) \in A$ and all $\theta_u \ge 0$ and $\theta_v \ge 0$.

University at Buffalo The State University of New York | Industrial and Systems Engineering

- Let $\{a_k\}$ be the ordered sequence of $q_{ij}c_{ij} + q_{ij}d_{ij}$ and $q_{ij}c_{ij}$ for all $(i, j) \in A$ and 0.
- Let $\{b_i\}$ be the ordered sequence of $p_{ij}d_{ij}$ and $p_{ij}d_{ij} + q_{ij}d_{ij}$ for all $(i,j) \in A$ and 0.

Data Uncertainty

Let $\{f_m\}$ be the ordered sequence of $p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij}$ for all $(i, j) \in A$ and 0.

- Let $\{a_k\}$ be the ordered sequence of $q_{ij}c_{ij} + q_{ij}d_{ij}$ and $q_{ij}c_{ij}$ for all $(i, j) \in A$ and 0.
- Let $\{b_l\}$ be the ordered sequence of $p_{ij}d_{ij}$ and $p_{ij}d_{ij} + q_{ij}d_{ij}$ for all $(i, j) \in A$ and 0.
- Let $\{f_m\}$ be the ordered sequence of $p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij}$ for all $(i,j) \in A$ and 0.

Let $\{a_k\}$ be the ordered sequence of $q_{ij}c_{ij} + q_{ij}d_{ij}$ and $q_{ij}c_{ij}$ for all $(i, j) \in A$ and 0.

Data Uncertainty

- Let $\{b_l\}$ be the ordered sequence of $p_{ij}d_{ij}$ and $p_{ij}d_{ij} + q_{ij}d_{ij}$ for all $(i, j) \in A$ and 0.
- Let $\{f_m\}$ be the ordered sequence of $p_{ij}d_{ij} + q_{ij}c_{ij} + q_{ij}d_{ij}$ for all $(i, j) \in A$ and 0.

We consider the following problem, defined over a sub-area of the entire (θ_u, θ_v) -space:

$$Z_{klm} = \min_{x,\theta_u,\theta_v} \Gamma_u \theta_u + \Gamma_v \theta_v + \sum_{(i,j)} (p_{ij} c_{ij} x_{ij} + \rho_{ij} + \mu_{ij})$$

subject to

$$\begin{aligned} x \in \Omega \\ a_k &\leq \theta_u \leq a_{k+1} \\ b_l &\leq \theta_v \leq b_{l+1} \\ f_m &\leq \theta_u + \theta_v \quad \text{if } f_m \in [a_k + b_l, a_{k+1} + b_{l+1}] \\ f_{m+1} &\geq \theta_u + \theta_v \quad \text{if } f_{m+1} \in [a_k + b_l, a_{k+1} + b_{l+1}] \end{aligned}$$

University at Buffalo The State University of New York | Industrial and Systems Engineering

	Data Uncertainty	

Robust Problem

Theorem

Let us define the following problem with an arbitrary constraint set Θ :

$$Z(\Theta) = \min_{x \in \Omega, (\theta_u, \theta_v) \in \Theta} \Gamma_u \theta_u + \Gamma_v \theta_v + \sum_{(i,j)} (p_{ij} c_{ij} x_{ij} + \rho_{ij} + \mu_{ij}) \quad (1)$$

Then the robust shortest path problem is equivalent to the following problem:

$$Z^* = \min_{k,l,m} Z(\Theta_{klm})$$
(2)

Some reduction in the search space is possible!

⁵Kwon, C., T. Lee, P. G. Berglund (2013), "Robust Shortest Path Problems with Two Uncertain Aultiplicative Cost Coefficients", *Naval Research Logistics*, 60(5), 375394

	Data Uncertainty	

Robust Problem

Theorem

Let us define the following problem with an arbitrary constraint set Θ :

$$Z(\Theta) = \min_{x \in \Omega, (\theta_u, \theta_v) \in \Theta} \Gamma_u \theta_u + \Gamma_v \theta_v + \sum_{(i,j)} (p_{ij} c_{ij} x_{ij} + \rho_{ij} + \mu_{ij}) \quad (1)$$

Then the robust shortest path problem is equivalent to the following problem:

$$Z^* = \min_{k,l,m} Z(\Theta_{klm})$$
(2)

Some reduction in the search space is possible! ⁵

⁵Kwon, C., T. Lee, P. G. Berglund (2013), "Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients", *Naval Research Logistics*, 60(5), 375394 C Kwon

33/54

We can also consider the worst-case of the CVaR risk measure. Computing the best WCVaR route requires solving a series of robust shortest-path problems.

⁶Toumazis, I. and C. Kwon, "Worst-case Conditional Value-at-Risk Minimization for Hazardous Materials Transportation", submitted to *Transportation Science*, in Revision

Outline

- 2 Risk Measures
- **3** Data Uncertainty
- **4** Behavioral Uncertainty

To design a safe road network, considering drivers' reaction to the design change.

 $\min_{y} \operatorname{Risk}(x(y))$

where x(y) describes the drivers' reaction to the design variable y.

- y is a binary variable to close a certain link or not.
- Uncertainty in the risk measure can be considered.
- Most papers assume drivers take the shortest path, i.e., x(y) is a solution to the shortest-path problem.

 $^{^{7}}$ Sun, L., M. Karwan, and C. Kwon, "Robust Hazmat Network Design Problems Considering Risk Uncertainty", submitted to *Transportation Science*, in Revision

Intro Risk Measures Data Uncertainty Behavioral Uncertainty
Behavioral Uncertainty

- Zhu and Levinson (2010): Most commuters do not choose the shortest path
- Nakayama et al. (2001): drivers are not fully rational
- How do hazmat drivers choose routes? Travel time? Highway vs local roads? Number of turns?
- We want some robustness in hazmat network design against behavioral uncertainty of drivers.

Risk Measures Data Uncertainty Behavioral Uncertainty

Example: two groups of people

- Betty Rogerson (BR): Doesn't care about the shortest path, as long as her path is within 5 minute difference.
- Peter Edison (PE): Cares about the shortest path, but based on his own perception of link travel costs.

Data Uncertainty

Bounded Rationality in Transportation

- Simon (1955): "A Behavioral Model of Rational Choice"
- Drivers choose a route if its length is no longer than the shortest-path length + a certain threshold
- Mahmassani and Chang (1987): "A boundedly rational user equilibrium (BRUE) is achieved in a transportation system when all users are satisfied with their current travel choices."
- Han et al. (2014): dynamic BRUE
- Lou et al. (2010): robust congestion pricing with BR
- This presentation: perception error model to generalize BR in the context of hazmat transportation (on-going research)

Intro Risk Measures Data Uncertainty Behavioral Uncertainty

Bounded Rationality

Definition (Additive Bounded Rationality)

A path is called a boundedly rational shortest path within an additive indifference band, if the path can be represented by a vector $x \in X$ such that

(A-BR)
$$\sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij} \leq c^0 + E$$
 (3)

where E is a positive constant for the additive indifference band.

Definition (Multiplicative Bounded Rationality)

A path is called a boundedly rational shortest path within a multiplicative indifference band, if the path can be represented by a vector $x \in X$ such that

$$(\mathsf{M}\text{-}\mathsf{B}\mathsf{R}) \qquad \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij} \leq (1+\kappa)c^0 \tag{4}$$

where $\kappa \in (0,1)$ is a constant for the multiplicative indifference band. C Kwon 40/54

The Perception Error (PE) model:

(PE)
$$\min_{x \in X} \sum_{(i,j) \in \mathcal{A}} (c_{ij} - \varepsilon_{ij}) x_{ij}$$

for some constant cost vector $\varepsilon \in \mathcal{E}$.

- \bullet ε : a vector of perception error of link cost
- E: set of uncertain perception error

(5)

Equivalence of BR and PE

(PE)
$$\min_{x \in X} \sum_{(i,j) \in \mathcal{A}} (c_{ij} - \varepsilon_{ij}) x_{ij}$$
(6)

$$\mathcal{E}_{A} = \left\{ \varepsilon : \sum_{(i,j)\in\mathcal{A}} \varepsilon_{ij} \leq E, \quad \varepsilon_{ij} \geq 0 \ \forall (i,j)\in\mathcal{A} \right\}$$
(7)
$$\mathcal{E}_{M} = \left\{ \varepsilon : \sum_{(i,j)\in\mathcal{A}} \varepsilon_{ij} \leq \kappa c^{0}, \quad \varepsilon_{ij} \geq 0 \ \forall (i,j)\in\mathcal{A} \right\}$$
(8)

Theorem

$$\mathbb{PE} + \mathcal{E}_A \iff \text{A-BR}$$
$$\mathbb{PE} + \mathcal{E}_M \iff \text{M-BR}$$

Intro

Data Uncertainty

Sub-path Multiplicative Bounded Rationality (SM-BR)

Definition

A path is called a *subpath multiplicative bounded-rationality* shortest-path, or *SM-BR* path with the multiplicative indifference band κ , if any subpath of the path is an M-BR path with the same multiplicative indifference band κ between the corresponding origin and destination nodes.

$$\mathcal{E}_{L} = \left\{ \varepsilon : 0 \le \varepsilon_{ij} \le \frac{\kappa}{1+\kappa} c_{ij} \ \forall (i,j) \in \mathcal{A} \right\}$$
(9)

Theorem

 $\mathsf{PE} + \mathcal{E}_L \iff \mathsf{SM}\text{-}\mathsf{BR}$

Data Uncertainty

Some Other Examples of the Perception Error Set $\ensuremath{\mathcal{E}}$

$$\mathcal{E}_{H} = \left\{ \varepsilon : \sum_{(i,j)\in\mathcal{A}} \varepsilon_{ij} \leq E, \sum_{(i,j)\in\mathcal{A}} \varepsilon_{ij} \leq (1+\kappa)c^{0} \quad \forall (i,j)\in\mathcal{A} \right\}$$
(10)
$$\mathcal{E}_{B} = \left\{ \varepsilon : I_{ij} \leq \varepsilon_{ij} \leq u_{ij} \leq c_{ij} \quad \forall (i,j)\in\mathcal{A} \right\}$$
(11)

C Kwon

44/54

	Data Uncertainty	Behavioral Uncertainty

Ellipsoidal Set

$$\mathcal{E}_{E} = \left\{ \varepsilon : ||Q^{-1/2}\varepsilon||_{2} \leq \xi \right\}$$

Theorem

Let \bar{x} be an optimal solution to (6) for some $\varepsilon \in \mathcal{E}_E$. Then,

$$\sum_{(i,j)\in\mathcal{A}} c_{ij}\bar{x}_{ij} \le c^0 + \xi\sqrt{\bar{x}^T Q\bar{x}}$$
(12)

(13)

45/54

Furthermore, the following bound holds

$$\sum_{(i,j)\in\mathcal{A}}c_{ij}ar{x}_{ij}\leq c^0+rac{\xi^2}{2}+\xi\sqrt{c^0+rac{\xi^2}{4}}$$

in a special case when $Q = diag(..., c_{ij}, ...)$.

C Kwon

46/54

Data Uncertaint

Generalized Bounded Rationality

- BR is a special case of PE.
- With PE, modelers have flexibility with link-specific preferences/perception of drivers.
- Link-based modeling (PE) is usually preferred to path-based modeling (BR).

Definition

A network user possesses generalized bounded rationality, if the user's route-choice decision-making can be justified by the perception error model for some closed and bounded set \mathcal{E} .

Behavioral Uncertainty

Generalized Bounded Rationality

BR is a special case of PE.

Risk Measures

- With PE, modelers have flexibility with link-specific preferences/perception of drivers.
- Link-based modeling (PE) is usually preferred to path-based modeling (BR).

Definition

A network user possesses generalized bounded rationality, if the user's route-choice decision-making can be justified by the perception error model for some closed and bounded set \mathcal{E} .

Behavioral Uncertainty

48/54

Robust Network Design with PE

$$\min_{y} \max_{x,\varepsilon} \sum_{(i,j)\in\mathcal{A}} \sum_{s\in\mathcal{S}} r_{ij}^{s} x_{ij}^{s}$$
(14)

subject to

$$y_{ij} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}$$

$$\varepsilon^{s} \in \mathcal{E}^{s} \quad \forall s \in \mathcal{S}$$
(15)
(15)
(16)

$$x^{s} = \arg\min_{x} \sum_{(i,j)\in\mathcal{A}} (c_{ij} - \varepsilon_{ij}^{s}) x_{ij}^{s}$$
(17)

subject to
$$-\sum_{(i,j)\in\mathcal{A}} x_{ij}^{s} + \sum_{(j,i)\in\mathcal{A}} x_{ji}^{s} = -b_{i}^{s} \quad \forall i \in \mathcal{N}$$
(18)
$$x_{ij}^{s} \leq y_{ij} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S}$$
(19)
$$x_{ij}^{s} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S}$$
(20)

Step 1. Solve the master network design problem to obtain x^k and y^k .

$$\begin{split} \min_{y} \sum_{\substack{(i,j) \in \mathcal{A} \ s \in \mathcal{S}}} r_{ij}^{s} x_{ij}^{s} \\ \text{s.t. } y_{ij} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A} \\ \varepsilon^{s} \in \mathcal{E}^{s} \quad \forall s \in \mathcal{S} \\ \min_{x} \sum_{\substack{(i,j) \in \mathcal{A}}} (c_{ij} - \varepsilon_{ij}^{s}) x_{ij}^{s} \\ \text{s.t. } -\sum_{\substack{(i,j) \in \mathcal{A}}} x_{ij}^{s} + \sum_{\substack{(j,i) \in \mathcal{A}}} x_{ji}^{s} = -b_{i}^{s} \quad \forall i \in \mathcal{N} \\ x_{ij}^{s} \leq y_{ij} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S} \\ x_{ij}^{s} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S} \end{split}$$

Cutting Plane Algorithm

Step 2. Given y^k , solve the worst-risk route-choice problem and obtain \hat{x}^k :

$$\begin{split} \max_{\mathsf{x},\varepsilon} \sum_{(i,j)\in\mathcal{A}} \sum_{s\in\mathcal{S}} r_{ij}^{s} \mathsf{x}_{ij}^{s} \\ \text{s.t. } \varepsilon^{s} \in \mathcal{E}^{s} \quad \forall s \in \mathcal{S} \\ \min_{\mathsf{x}} \sum_{(i,j)\in\mathcal{A}} (c_{ij} - \varepsilon_{ij}^{s}) \mathsf{x}_{ij}^{s} \\ \text{s.t. } -\sum_{(i,j)\in\mathcal{A}} \mathsf{x}_{ij}^{s} + \sum_{(j,i)\in\mathcal{A}} \mathsf{x}_{ji}^{s} = -b_{i}^{s} \quad \forall i \in \mathcal{N} \\ & \mathsf{x}_{ij}^{s} \leq y_{ij}^{k} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S} \\ & \mathsf{x}_{ij}^{s} \in \{0,1\} \quad \forall (i,j) \in \mathcal{A}, s \in \mathcal{S} \end{split}$$

ntro Risk Measures Data Uncertainty Behavioral Uncertainty

Cutting Plane Algorithm

Step 3. If \hat{x}^k is identical to x^k , stop. Otherwise add cuts to the master network design problem and go to Step 1.

$$\sum_{\substack{(i,j)\in p}} x_{ij}^{s} \leq |p| - 1 + z_{p}, \ z_{p} \leq x_{ij}^{s} \quad orall (i,j) \in p, \ \sum_{\substack{(i,j)\in p' \ z_{p} \in \{0,1\}}} y_{ij} \leq |p'| - z_{p},$$

These cuts make the path \hat{x}^k unavailable.

Data Uncertainty

Solution without considering uncertain behavior

Data Uncertainty

Robust solution considering uncertain behavior

C Kwon

53/54

Intro

Risk Measure

Data Uncertainty

Behavioral Uncertainty

Question???

