

Estimation of Airline Itinerary Choice Models Using Disaggregate Ticket Data

Laurie Garrow

with Matthew Higgins, GA Tech Virginie Lurkin* Michael Schyns, University of Liege

Northwestern University

Evanston, IL

October, 2015

Ecole de Gestion de l'Université de Liège

My Research

My Background

Leadership: President, AGIFORS Former President, INFORMS Transportation Science and Logistics Former Board Member, INFORMS Revenue Management and Pricing Former Chair, INFORMS Aviation Applications Section, 2011-12 Former Co-Chair, Emerging Methods, TRB Travel Demand, 2007-12

Teaching:

Discrete choice analysis, demand modeling (CEE graduate) Advanced statistical programing (CEE graduate) Revenue management and pricing (MBA) Civil engineering systems, probability (CEE undergraduate)

Ongoing Industry and Government Collaborations: Boeing, American, Sabre, Airline Reporting Company, ... Parsons Brinkerhoff, AirSage, Epsilon, Georgia DOT Georgia

Research Philosophy

Research Portfolio

Travel Demand Modeling

Georgia School of Civil and Tech Environmental Engineering

HOMEPAGE

RESEARCH 2013 INFORMS RMP

BIO STUDENTS

OUTREACH SCHOLARSHIPS

Georgia Institute of Technology

CURRENT RESEARCH

PUBS

Have you ever chosen a flight based on whether an aisle or middle seat was available? GT researchers are developing itinerary choice models based on online pricing and seat map information. Learn more

Welcome to Dr. Laurie Garrow's Research Group

TEACHING

Understanding demand for products and services is an integral part of many fields. Within the airline industry, there has been increased interest in modeling demand as the collection of individuals' decisions using discrete choice models. Within the urban travel demand field, there has been increasing interest in using non-traditional data sources, such as <u>credit reporting</u> data, to model transportation decisions. Dr. Garrow and her research group are working on ways to use online data and non-traditional data sources to enhance our understanding of traveler behavior, particularly within the airline industry.

http://garrowlab.ce.gatech.edu

Outline

Network Planning Models

Are used to forecast **schedule profitability**

Support many decisions such as **where** to fly, **when** to fly, **what equipment** to use/purchase, which airlines/flights to **codeshare** with, etc.

3

Contain multiple **sub-modules**

Network Planning Sub-Models

Quality of Service Index (QSI)

QSI models developed in 1957 and can be thought of in terms of **ratios**

$$QSI_{i} = (\beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{3} + \beta_{4}X_{4}), \text{ or }$$

$$QSI_{i} = (\beta_{1}X_{1})(\beta_{2}X_{2})(\beta_{3}X_{3})(\beta_{4}X_{4}).$$

$$S_{i} = \frac{QSI_{i}}{\sum_{j \in J} QSI_{j}}$$

where

 β are preference weights

X are quality measures (*e.g.*, # stops, fare, carrier, equipment type)

i,j are indices for itineraries

Limitations

- β are usually **not estimated**
- QSI models don't incorporate competitive factors

Itinerary Choice Model

Factors Influencing Itinerary Choice

The Fundamental Problem

demand = $\boldsymbol{\beta} \times \text{price} + \dots + \boldsymbol{\varepsilon}$

Demand Supply

 $\beta = +0.14$

Outline

Research Objectives

Use ticketing data from Airlines Reporting Corporation (ARC) to **generate itineraries** and **estimate** choice models

Estimate models that account for **price endogeneity**

Outline

Eliminated tickets with fares < \$50 (employee and frequent flyers) or in top 0.1% (charter flights)

More than 9.6 million tickets meet these criteria

Explanatory Variables

Carrier characteristics

- Carrier preferences
- Marketing relationships
- Airport share

Itinerary characteristics

- Price
- Departure time of day preferences
- Elapsed time
- Number of connections
- Short connection (<60 minutes) indicator
- Direct flight indicator

Marketing Relationships

- **Online** = Same marketing and operating carrier all legs
- Codeshare = Same marketing carrier, different operating carrier
- Interline = Different marketing carriers, different operating carrier

Airport Share

"Business" Prices	"Leisure" Prices
Average price for First , Business , and Unrestricted Coach fares	Average price for Restricted Coach and Other fares

- Average is taken by origin, destination, carrier and level of service (NS, 1 CNX, 2 CNX)
- Assume outbound (or inbound) price = total price/2
- Exclude taxes

Departure Time of Day

Departure time preferences vary by

- ✓ Length of haul
- ✓ Direction of travel
- ✓ Number of time zones
- ✓ Day of week
- ✓ Itinerary type (OW, OB, IB)

2

Continuous time of day preference formulation is preferred over discrete formulation to avoid counter-intuitive forecasts

10 Time of Day Classifications

Same time zone, < 600 miles

Same time zone, ≥ 600 miles

1 time zone westbound, < 600 miles

1 time zone westbound, ≥ 600 miles

For each classification, estimate separate time of day preferences for **outbound**, **inbound** and **one-way** itineraries and **day of week**

Descriptive Statistics

]	Distance	•			Choic	e Sets	
Segment	Min	Mean	Max	# OD	Min Alts	Avg Alts	Max Alts	# Pax
Same TZ ≤ 600	67	419	600	3923	2	19	81	1,995,096
Same TZ > 600	601	855	1534	3034	2	25	107	1,599,528
$1 \text{ TZ } \text{EB} \leq 600$	118	463	600	766	2	18	69	284,983
1 TZ EB > 600	601	995	1925	3223	2	25	123	1,283,187
$1 \text{ TZ WB} \le 600$	118	463	600	755	2	18	66	286,818
1 TZ WB > 600	601	994	1925	3251	2	24	132	1,296,951
2 TZ EB	643	1596	2451	1573	2	30	115	641,831
2 TZ WB	643	1597	2451	1541	2	28	109	642,802
3 TZ EB	1578	2229	2774	1074	2	43	172	653,091
3 TZ WB	1575	2227	2774	1059	2	41	164	650,062

Continuous Time of Day

Georgia Institute of Technology

$$\begin{aligned} \beta_{1cmd}sin\left(\frac{2\pi t}{1440}\right) + \beta_{2cmd}cos\left(\frac{2\pi t}{1440}\right) + \beta_{3cmd}sin\left(\frac{4\pi t}{1440}\right) + \beta_{4cmd}cos\left(\frac{4\pi t}{1440}\right) + \\ \beta_{5cmd}sin\left(\frac{6\pi t}{1440}\right) + \beta_{6cmd}cos\left(\frac{6\pi t}{1440}\right) \end{aligned}$$

where

 $c = time \ of \ day \ classification \ 1,...10$ m = outbound, inbound, oneway $d = day \ of \ week \ 1, ...7$ $t = departure \ time \ in \ minutes \ past \ midnight$ $1440 = number \ of \ minutes \ in \ a \ day$

²⁴ Reference: Koppelman, Coldren, and Parker (2008).

Data Representativeness

Carrier	ARC Data	DB1B Market Data
DL	29.5%	23.4%
UA	22.9%	17.1%
US	18.4%	10.0%
AA	17.5%	19.0%
AS	3.3%	4.2%
B6	3.2%	3.0%
F9	2.2%	1.7%
FL	1.4%	2.8%
VX	1.3%	0.9%
SY	0.3%	0.2%
WN	0.0%	17.7%
Total	100%	100%

Outline

Network Planning Sub-Models

Define Choice Sets

- **1** Construct choice sets for each OD city pair that departs on day of week d
- 2
- Create a **representative weekly schedule** as the Monday after the 9th of the month [May 13 May 19, 2013]
- 3 Define a unique itinerary by \mathbf{org}_{l} , \mathbf{dst}_{l} , $\mathbf{op \ carr}_{l}$, $\mathbf{op \ flt}$ \mathbf{num}_{l} , $\mathbf{dept \ dow}_{l}$ for legs l=1,2,3
- 4
- Map all demand to representative schedule/unique itinerary
- 5
- Eliminate choice sets with demand < 30 pax/month

Mapping process is **98%** accurate for all variables and screening rule changes MNL parameter estimates by **4.4%**

Georgia Institute

Itinerary Choice Model

The Fundamental Problem

demand = $\boldsymbol{\beta} \times \text{price} + \dots + \boldsymbol{\varepsilon}$

Demand Supply

 $\beta = +0.14$

The Fundamental Solution

Multiple approaches for correcting **price endogeneity**

We will focus on two-stage control function method that uses **instruments**

The Basic Idea of Control Function

Instrument

Validity tests ("are instruments valid?")

Instruments should be **correlated with price**

Instruments should not be correlated with choice

Two-Stage Control Function Method

Stage 1: Linear Regression

Stage 2: Discrete Choice Model

 $V = \alpha_1 \operatorname{sin2pi_MO_OW_S1} + \dots + \alpha_{1269} \operatorname{price} + \dots + \alpha_{1278} \operatorname{interline}$

$$+ \alpha_{1279} \hat{\gamma} + \varepsilon$$

Stage 2: Discrete Choice Model

 $V = \alpha_1 \operatorname{sin2pi_MO_OW_S1} + \dots + \alpha_{1269} \operatorname{price} + \dots + \alpha_{1278}$ interline

Use **t-test to see if** α_{1279} is significant (if significant, price endogeneity is present)

Estimate Two Discrete Choice Models

 $V = \alpha_1 \sin 2pi_MO_OW_S1 + \dots + \alpha_{1269} \text{ price } + \dots + \alpha_{1278} \text{ interline}$ $+ \alpha_{1279} \hat{\gamma} + \varepsilon$

 $V = \alpha_1 \sin 2pi_MO_OW_S1 + \dots + \alpha_{1269} \text{ price } + \dots + \alpha_{1278} \text{ interline}$ $+ \alpha_{1279} \hat{\gamma} + \alpha_{1280} \text{ IV1} + v$

- Use Likelihood-ratio test to **compare difference in log likelihoods** between two models.
- If difference $\langle \chi^2_{NR} = 3.84$ for one instrument, instruments are valid

Which Instruments?

3

Measures of competition and market power ("Stern")

Measures of non-price characteristics of other products ("BLP" for Berry, Levinsohn, and Pakes (1995))

Cost-Shifting Variables

Used for **aggregate-level** demand estimation

Description	Airline Examples	
Variables that impact a product's cost but that are uncorrelated with demand shocks	Hsaio (2008) uses route distance and unit jet fuel costs	
	Berry and Jia (2009) and Granados, et al. (2012) use a hub indicator	
	Granados, et al. (2012) and Hotle et al. (2015)use <mark>distance</mark>	
	Hotle, et al. (2015) use the portion of consumers arriving to a destination metropolitan area considered to be business and the population of the origin city	
	origin city	

Hausman-Type Price Instruments

Based on economic theory that a firm's price in one city (market) is a function of the **average marginal costs** of a product + **markup** amount due to different willingness to pay across markets.

Description	Airline Examples
Price of the same brand in other geographic contexts are used as	Gayle (2004) uses airline's average prices in all other markets with similar length of haul
instruments of the brand in the market of interest.	Hotle et al. (2015) use the coefficient of variation of the lowest offered nonstop fares across competitors for a specific itinerary.

Stern: Competition and Market Power

Argues that the fact a firm sells multiple products is irrelevant to the value customers assign to a product, but is correlated with price and advertising.

Description	Airline Examples
	Berry and Jia (2009) use number of all carriers offering service on a route
Measures of the level	Granados, et al. (2012) use the Herfindahl index
of market power by multiproduct firms, and	Number of daily nonstop flights in the market operated by the airline of interest and competitor airlines
measures of the level of competition	Mumbower et al. (2014) use the number of daily nonstop flights in the market operated by competitor.
	Hotle et al. (2015) use the number of monthly seats flown in market interacted with days from departure.

BLP: Non-Price Char of Other Products

Use observed exogenous product characteristics, namely observed product characteristics for a **firm**, values of same product characteristics for **firm's other products**, values of same product characteristics for **competitors' products**.

Description	Airline Examples
Average non-price characteristics of the other products supplied by the same firm in the same market	Average flight capacity of other flights operated by the airline of interest in the same market
Average non-price characteristics of the other products supplied by the other firms in the same market	Berry and Jia (2009) use the % of rival routes that offer direct flights, the average distance of rival routes, and the number of rival routes

Our Instruments

Average price by carrier in other similar markets ("Hausman")

- Presence or not of an LCC carrier in the market
- Level of service: nonstop versus connection
- Number of major hubs at origin and destination (from 0 to 2)
- Minimum equipment type for itinerary: Widebody/Narrowbody Jet or other
- Business Area (based on Borenstein Business Index)
- Number of seats by carrier and markets ("Stern")

Outline

Results: 10% of the Data Set

# of markets (directional OD pairs)	19, 962
# choice sets (origin, destination, DOW)	93, 209
# passengers	277, 812
# alternatives in a choice set	941,220
- Min	2
- Max	172
- Mean	37.2

Model Fit Statistics	
LL at zero	-2,581,976.9
LL at convergence	-2,479,081.4
Rho-square w.r.t. zero	0.2202

Results: Value of Time

Variable	Before Correction	After Correction
High yield fare (\$)	-0.0015	-0.0037
Low yield fare (\$)	-0.0043	-0.0065
Elapsed time (min)	-0.0047	-0.0044

VOT	DCA No correction	DCA Control Function
Leisure	\$65	\$44
Business	\$192	\$77

A **business** traveler would pay **\$77** to save **1 hour of travel** A **leisure** traveler would pay **\$44** to save **1 hour of travel**

Results: Price Elasticities

Model	Mean Elasticity – Business –	Mean Elasticity – Leisure –
DCA, no correction	-0.43	-0.82
DCA, control function	-1.09	-1.22

An elasticity of -1.22 means that a **10% increase** in leisure fares leads to a **22% decrease in demand**

An elasticity of -1.09 means that a **10% increase** in business fares leads to a **9% decrease in demand**

DCA with no correction is an **inelastic model** while DCA with control function is an **elastic model**

Relation to Other Airline Studies

Study	Level of Aggregation	Elasticity Estimate	Data Source
Gillen et al. (2002)	Market	-0.79 to -1.43 (long-haul)	Meta study
InterVistas (2007)	Route/Market National Pan-National	-1.40 to -1.54 -0.80 to -0.88 -0.60 to -0.66	DB1B
Hsiao (2008)	Market Route	-1.05 to -2.66 -1.76 to -2.97	DB1B
Granados et al. (2012)	Booking channel: Leisure travel Business travel	-1.33 to -2.28 -0.34 to -1.29	Booking data
Mumbower et al. (2015)	Flight	-1.32 to -1.96	Daily online prices and seat maps
This study	Route/Market	Biz: -1.09 Leis: -1.22	Ticketing data

Variable	Before Correction	After Correction
High yield fare (\$)	-0.001	-0.004
Low yield fare (\$)	-0.004	-0.007
Elapsed time (min)	-0.005	-0.004
Number of connections	-2.049	-2.202
Number of directs	-1.163	-1.199
ORG outbound freq share	0.981	0.971
DST inbound freq share	0.860	0.862
Short connection	-0.091	-0.068
Codeshare	0.486	0.500
Interline	-0.289	-0.216

Strong preference for nonstop itineraries

> Directs are preferred over connections

Variable	Before Correction	After Correction	
High yield fare (\$)	-0.001	-0.004	
Low yield fare (\$)	-0.004	-0.007	
Elapsed time (min)	-0.005	-0.004	Effect of flight
Number of connections	-2.049	-2.202	frequency in
Number of directs	-1.163	-1.199	nome location
ORG outbound freq share	0.981	0.971	Slightly stronger
DST inbound freq share	0.860	0.862	effect for outbound
Short connection	-0.091	-0.068	passengers
Codeshare	0.486	0.500	
Interline	-0.289	-0.216	

Variable	Before Correction	After Correction	
High yield fare (\$)	-0.001	-0.004	
Low yield fare (\$)	-0.004	-0.007	
Elapsed time (min)	-0.005	-0.004	5
Number of connections	-2.049	-2.202	
Number of directs	-1.163	-1.199	
ORG outbound freq share	0.981	0.971	
DST inbound freq share	0.860	0.862	
Short connection	-0.091	-0.068	
Codeshare	0.486	0.500	
Interline	-0.289	-0.216	

Customers avoid short connections

But effect is not strong – for domestic connections

Variable	Before Correction	After Correction
High yield fare (\$)	-0.001	-0.004
Low yield fare (\$)	-0.004	-0.007
Elapsed time (min)	-0.005	-0.004
Number of connections	-2.049	-2.202
Number of directs	-1.163	-1.199
ORG outbound freq share	0.981	0.971
DST inbound freq share	0.860	0.862
Short connection	-0.091	-0.068
Codeshare	0.486	0.500
Interline	-0.289	-0.216

Code share itineraries selected more often than online itineraries

Online and codeshare itineraries are preferred to interline itineraries

Time of Day Results: Same TZ > 600 miles

Outline

Future Work

Estimate **advanced discrete choice models** that incorporate competitive characteristics

Extend analysis to **BLP methods** to account for missing data and customer characteristics

Apply BLP methods to **merger and acquisition analysis** to isolate "how much" price increase post-merger is due to better product offerings

Techmology

Ideally, work with an airline to implement discrete choice model and **evaluate forecasting benefits** of price formulation **Georgia Institute**

Contributions

First estimates of **itinerary-level** price elasticities based on **detailed ticketing data**

Offer a set of **valid instruments** that can be used in future studies of air travel demand

Estimate detailed **time of day preferences** that vary as a function of distance, direction of travel (e.g., EW, WE, NS), number of time zones travelled, and itinerary segment (outbound, inbound, one-way)

Technology

Developed a framework that can be extended to **BLP methods** to correct for missing data and add customer characteristics **Georgia**Institute

Research Philosophy

Acknowledgements

References

- 1. Berry, S. and Jia, P. 2010. Tracing the woes: An empirical analysis of the airline industry. *American Economic Journal: Microeconomics*, 2 (3), 1-43.
- 2. Berry, S., Levinsohn, J. and Pakes, A. 1995. Automobile prices in market equilibrium. *Econometrica*, 63 (4), 841-890.
- 3. Garrow, L.A. 2010. *Discrete Choice Modelling and Air Travel Demand: Theory and Applications*. Ashgate Publishing: Aldershot, United Kingdom. pp. 286.
- 4. Gayle, P.G. 2008. An empirical analysis of the competitive effects of the Delta/Continental/Northwest codeshare alliance. *Journal of Law and Economics*, 51(4):743–766.
- 5. Gillen, D.W., Morrison, W.G. and Stewart, C. 2002. *Air Travel Demand Elasticities: Concepts, Issues and Measurement*. Department of Finance, Canada. www.fin.gc.ca/consultresp/airtravel/airtravstdy_-eng.asp
- 6. Granados, N., Gupta, A. and Kauffman, R.J. 2012 Online and offline demand and price elasticities: Evidence from the air travel industry. *Information Systems Research*, 23 (1), 164-181.
- 7. Guevara-Cue, C.A. 2010. *Endogeneity and Sampling of Alternatives in Spatial Choice Models*. Doctoral Dissertation, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA.
- 8. Guevara, C.A. and Ben-Akiva, M. 2006. Endogeneity in residential location choice models. *Transportation Research Record: Journal of the Transportation Research Board*, 1977, 60-66.
- 9. Hotle, S., Castillo, M., Garrow, L.A. and Higgins, M.J. The impact of advance purchase deadlines on airline customers' search and purchase behaviors. *Transportation Research Part A* (submitted in April, 2014; under third round review as of May, 2015).
- 10. Hsiao, C-.Y. 2008. *Passenger Demand for Air Transportation in a Hub-and-Spoke Network*. Ph.D. Dissertation, Civil and Environmental Engineering, University of California, Berkeley.
- 11. InterVISTAS. 2007. *Estimating Air Travel Demand Elasticities: Final Report.* www.iata.org/whatwedo/Documents/economics/Intervistas_Elasticity_Study_2007.pdf.
- 12. Koppelman, F.S., Coldren, G.C. and Parker, R.A. 2008. Schedule delay impacts on air-travel itinerary demand. *Transportation Research Part B*, 42(3), 263-73.
- 13. Mumbower, S., Garrow, L.A. and Higgins, M.J. (2014). Estimating flight-level price elasticities using online airline data: A first step towards integrating pricing, demand, and revenue optimization. *Transportation Research Part A*, 66: 196–212.

57

Questions

