Background	Methodological Approach O	Case Study Area	SP-RP Survey

Flexible Transit for Low-Density Communities

Charlotte Frei, PhD Candidate

January 22, 2015

Background	Methodological Approach O	Case Study Area	SP-RP Survey

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Outline

- 2 Methodological Approach
 - Semi-Flexible Service Design

3 Case Study Area

Service Performance

Case Study Area

SP-RP Survey

Public Transportation Provision in Low-Density Areas

Figure: Comparison of Street Connectivity in urban vs. suburban setting

- Vicious and virtuous cycles of regional transit allocation
- High-cost of demand-responsive transit, taxis
- Demographics: youth travel, silver tsunami, suburbanization of poverty

Semi-Flexible Systems: Types

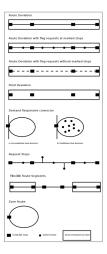


Figure: Flexible Service Types (From Errico et al. [4])

Demand-Responsive Transit Services

- Typically door-to-door unless some structure in place (as in previous slide)
- Sometimes a deadline (2 hours before, evening before), particularly for paratransit
- Most research focuses on different service combinations, meaningful objective functions, varying input parameters (time windows, vehicle types)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transportation Network Companies (TNCs) and other emerging options

Uber, Lyft and Sidecar currently operate in Chicago - and all are testing shared services

- Curb and other apps for hailing/paying for cabs
- Bridj (Boston) serves origins and destinations that are otherwise not connected, or require many transfers
- Chariot, Leap and Loup (San Francisco) offer more "dynamic" transit routes, primarily for commuters, but are not dynamic in the sense of DRT

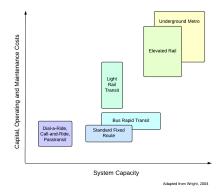
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transportation Network Companies (TNCs) and other emerging options

- Uber, Lyft and Sidecar currently operate in Chicago and all are testing shared services
- Curb and other apps for hailing/paying for cabs
- Bridj (Boston) serves origins and destinations that are otherwise not connected, or require many transfers
- Chariot, Leap and Loup (San Francisco) offer more "dynamic" transit routes, primarily for commuters, but are not dynamic in the sense of DRT

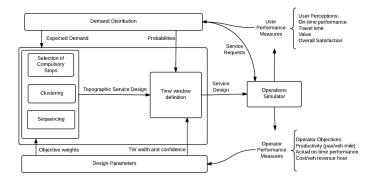
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transportation Network Companies (TNCs) and other emerging options


- Uber, Lyft and Sidecar currently operate in Chicago and all are testing shared services
- Curb and other apps for hailing/paying for cabs
- Bridj (Boston) serves origins and destinations that are otherwise not connected, or require many transfers
- Chariot, Leap and Loup (San Francisco) offer more "dynamic" transit routes, primarily for commuters, but are not dynamic in the sense of DRT

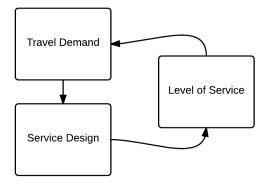
< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Transportation Network Companies (TNCs) and other emerging options


- Uber, Lyft and Sidecar currently operate in Chicago and all are testing shared services
- Curb and other apps for hailing/paying for cabs
- Bridj (Boston) serves origins and destinations that are otherwise not connected, or require many transfers
- Chariot, Leap and Loup (San Francisco) offer more "dynamic" transit routes, primarily for commuters, but are not dynamic in the sense of DRT

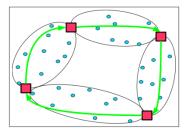
Research Questions

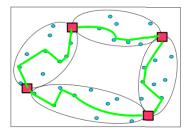
- How much structure is needed at what level of demand?
- What level of structure offers benefits to both users and operators, as compared to DRT or fixed-route?


Conceptual Framework

Background	Ο	~	~	и		n	2

Case Study Area


Simplified Concept


Semi-Flexible Service Design

Existing Method: Single-Line DAS

- Crainic et al. single line, single vehicle on networks with crow-fly distance
- Some interesting practical examples exist, e.g. Flexlinjen in Sweden and Kutsuplus in Finland, but little knowledge of supply-demand interactions
- Contribution: simulate on a real network with multiple vehicles and actual travel demand data

Visiting compulsory stops only

Visiting compulsory and active optional stops

Compulsory stops with time windows [earliest departure, latest arrival]

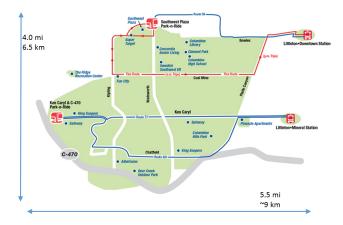
Optional stops (some activated)

Errico et al. 2011a, 2011b; Crainic et al. 2010

Case Study Service Area Information

Census Fact Finder 2012 Estimates:

- Population: 42,000
- Current trip requests: ~5-10 per hour (off-peak/peak)
- <u>Service Area</u>: 16 square miles
- Median income: \$57,330
- Employment:
 - 33,000 over age 16
 - ~22,000 in labor force
 - 7.4% unemployment
 - Lockheed Martin employs 14,000



Case Study Area

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

Applied to Existing Service Area

Figure: South Jefferson County Call-and-Ride Area

Clustering and Network Analysis

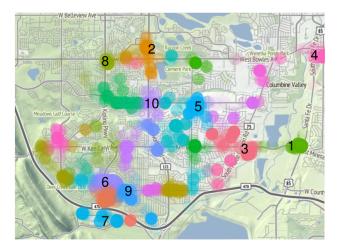


Figure: K-means Clustering with Clusters of highest degree labeled and some

Methodological Approach

Case Study Area

SP-RP Survey

● ▲ ● ● ● ● ● ● ●

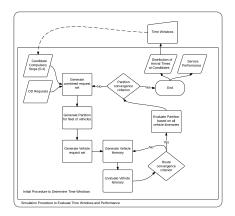

Bird's Eye View of Location 6/7

Figure: Bird's Eye View of Kipling Ave. & W Chatfield Ave.

Solo 単純 スポッスポッスポッスロックのの

Identifying Time Windows

- Simulate service without time windows (i.e. earliest arrival and latest departure from a "checkpoint"), but with compulsory stops, to determine ideal time for visiting.
- Then add time windows to simulation to assess performance.

Example: Joliet IL, 3 vehicles

Compulsory	Stop	Mean	SD	75 %ile	90th %ile
Stops		Arrival	Arrival		
1	1: Joliet Metra Station	6.07	9.99	12.27	18.70
2	1: Joliet Metra Station	11.27	11.31	14.97	25.66
2	2: Twin Oaks Shopping Place	14.42	12.37	22.98	27.31
3	1: Joliet Metra Station	8.62	11.99	15.53	25.80
3	2: Twin Oaks Shopping Place	15.69	12.66	23.93	32.03
3	3: Larkin Village Apartments	6.86	9.26	15.05	15.05
4	1: Joliet Metra Station	13.49	13.49	22.59	29.99
4	2: Twin Oaks Shopping Place	7.34	12.13	10.93	27.31
4	3: Larkin Village Apartments	6.58	8.29	15.05	15.05
4	4: Joliet Mall and Shopping	12.65	13.77	22.35	25.90
	Center				

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Service Objectives

- Typical DRT service objective function is to maximize slack time in the schedule.
- Here, minimize sum of operator and user cost and impose a large penalty for time window violations
- User travel time vs. operating time
 - Simple test showed including user costs does not increase operator cost much, but an objective minimizing only operator costs resulted in much high user costs.
 - Sensitivity analysis regarding weights for users, operators and violations

Case Study Area

Candidates tested: 1, 2, 4 and 6

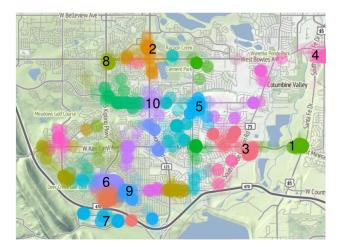


Figure: K-means Clustering with Clusters of highest degree labeled and some

Case Study Area

SP-RP Survey

Assessment of Appropriate Candidate "Checkpoints"

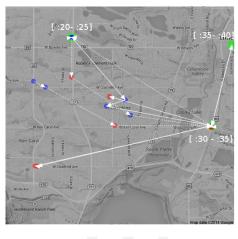
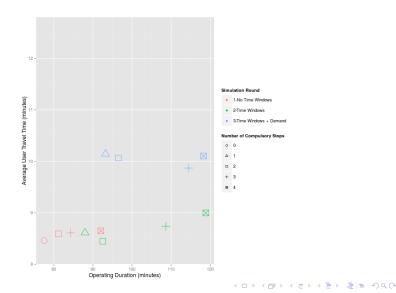


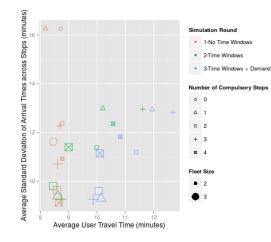
 Figure: South Jefferson County, Colorado: Potential Last mile connector, 3 compulsory stops,

 2 vehicles


Background	Ο	~	~	и		n	2

Methodological Approach

Case Study Area ●O SP-RP Survey


Service Performance

User Travel Time vs. Operating Time for Fleet Size = 3

Service Performance

Improved Reliability (for some cases)

- As you add vehicles and compulsory stops, arrival times at any point in service area are more predictable
- For 3 vehicles, 3 compulsory stops: 1.5 minute reduction in standard deviation of arrival time, 0-1.2 minute increase in average travel time

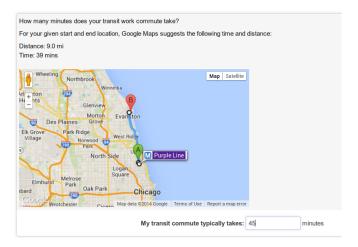
Background	Methodological Approach O	Case Study Area	SP-RP Survey
Survey Design			

- Convenience sample of Chicago area commuters, 120 responses in September 2014:
 - CMAP newsletter
 - NUTC Facebook and Twitter accounts
 - Personal Facebook and Twitter accounts
- Short-, medium- and long-commute markets to generate different attribute levels for efficient design
 - Maximizes information obtained from each respondent, and choices presented are more realistic
 - Gathered information about actual commute and revealed preference to classify respondents
- Will conduct a winter panel, Feb 1-28
 - 35 respondents from summer offered to take follow-up survey.

< □ ▶ < @ ▶ < E ▶ < E ▶ 差目= のへぐ

Stated Choice Survey

Scenario 1:				
	Transit	Car	Flexible Transit	
In-Vehicle Travel Time	13min	46 min	68 min	
Travel Costs	4USD	14.57 USD**	1USD	
Walk Time	18 min	3 min	3 min	
Wait Time			7 min	
Frequency (Headway)	every 12 minutes		every 20 minutes	
Number of Transfers	2		1	
Travel cost for car is a combin *Transit wait time is dependen Choose one of the following ans	t on a number of things includir		cy and when you decide to	leave your house
			e Transit	None


Figure: Sample Scenario from Stated Choice Survey

< A

ヨト イヨト ヨヨ のへの

Reliability of current travel mode

Survey captured current reliability by asking the user to report their **actual** travel time (ATT) for transit and/or auto, compared to Google API generated result, and rate how confident they were in on-time arrival given their reported **allowed** time:

Planning time index = Allowed/ Free flow; Buffer time index = (Allowed - Reported)/Reported

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

Initial Findings

Preliminary results for flexible mode choice

- Value of...
 - Travel Time: \$19/hour
 - Reliability: \$10/hour
 - Wait Time: \$27± 11/hour
 - Access Time: \$29± 4 /hour
- Age ranged from 22 to 57 years old; 52% males in sample
- 57 of the 120 (48%) respondents have used a TNC such as Uber, Lyft, Sidecar:
 - These respondents were less likely to choose traditional transit in choice scenarios, all else equal, but neither more nor less likely to choose flexible transit over car

Initial Findings

Preliminary results for flexible mode choice (continued)

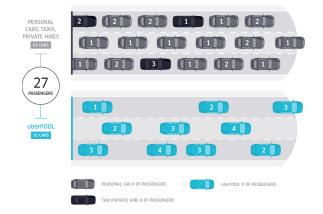
- Other notable items
 - Divvy significant, car-sharing was not -> Early-adopters, low VOT, active travelers?
 - Whether a passenger conducts activities on-board (leisure reading, working on a laptop, relaxing) increased probability of choosing transit modes

- Respondents' revealed preference tended toward transit use, simple inertia parameter does not explain much variation ¹
 - Stated Choice: 31% Car, 13% flexible transit, 56% traditional transit

¹60% transit, 26% car, 11% walk, 3% bike in sample, versus 45/55 transit/auto split for trips to CBD for all Chicago commuters

Initial Findings

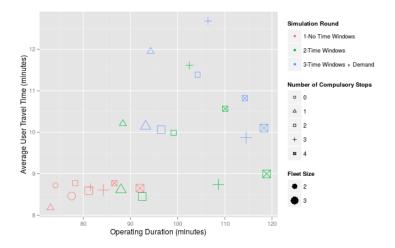
Key Takeaways and Expected Findings

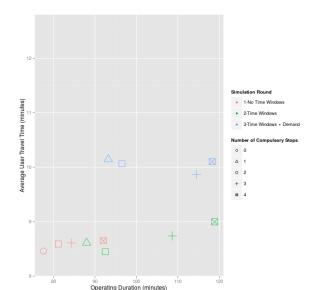

- Extract performance measures from user and operator objectives to determine appropriate service.
- Adding structure to a demand-responsive service may reduce (perceived) barriers to entry for people accustomed to a traditional transit service
 - Current transit users seem to prefer a timetable, had some wariness of (hypothetical) flexible mode
 - Structure can enhance reliability, but some flexibility will mean less walking in sparse areas
- Expect to identify thresholds for acceptable frequency of service in low-density areas
- **On-going** sensitivity analysis related to:
 - fleet size and capacity
 - objective function defined by user cost trade-offs for operator and impact on demand
 - demand fluctuation: how robust is service design?

Initial Findings

References

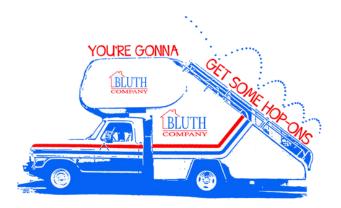
- [1] Crainic, T. and et al. (2005). Meta-Heuristics for a class of demand responsive transit systems. *INFORMS Journal on Computing*, 17(1):10–24.
- [2] Crainic, T. G., Errico, F., Malucelli, F., and Nonato, M. (2010). Designing the master schedule for demand-adaptive transit systems. *Annals of Operations Research*, 194(1):151–166.
- [3] Errico, F., Crainic, T. G., Malucelli, F., and Nonato, M. (2011a). The design problem for Single-Line demand- adaptive transit systems. Technical Report 2011-65.
- [4] Errico, F., Crainic, T. G., Malucelli, F., and Nonato, M. (2011b). A unifying framework and review of Semi-Flexible transit systems. Technical Report 2011-64, CIRRELT.
- [5] Errico, F., Crainic, T. G., Malucelli, F., and Nonato, M. (2012). A benders decomposition approach for the symmetric TSP with generalized latency. Technical Report 2012-78, CIRRELT.
- [6] Errico, F., Crainic, T. G., Malucelli, F., and Nonato, M. (2013). A survey on planning semi-flexible transit systems: Methodological issues and a unifying framework. *Transportation Research Part C: Emerging Technologies*, 36:324–338.


A Comment on Emerging and Existing Flexible Modes


- How will cities and agencies work with these platforms to improve service, potentially with their existing rolling stock?
- Will these services be low-cost enough to serve current captive markets?
- What is the role of car-sharing (and autonomous shared vehicles) in filling this gap?

User Travel Time vs. Operator Cost for Fleet Size 2 & 3

(Where user travel time has same penalty as operating time in objective function)



User Travel Time vs. Operator Cost for Fleet Size = 3

▲ 王 ► - ● ○ ○ ○

Watch out for hop-ons

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Passenger Delay when Random Demand is Introduced

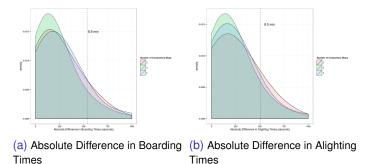
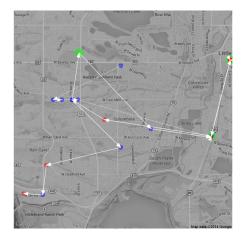
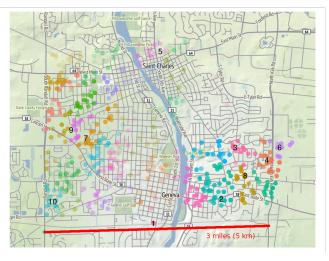
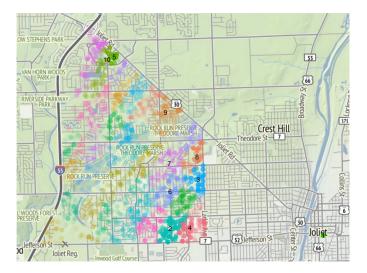



Figure: Difference in Boarding and Alighting times after Additional Demand at Compulsory Stops with Time Windows

Assessment of Appropriate Candidate "Checkpoints"-Another example



Request Type


Compulsory
Destination
Origin

 ・ロト・(書)・(書)・(書)・ 書目 のへで

Flexible Technique: St. Charles, Illinois, USA (Chicago metro area)

Flexible Technique: Joliet, Illinois, USA (Chicago metro area)

