Beyond Transport Time: modeling time use, understanding time values.

Sergio Jara-Díaz
Universidad de Chile
What is the Value of Time?

- The value of assigning it to a satisfying activity?
- The value of diminishing it in an unpleasant activity?
- The wage rate?

The time you enjoy wasting is not wasted time.

--Bertrand Russell
Travel and activities: two perspectives on VoTT.
Perspective 1

Diminish travel time by paying more...
or

$I-Ec$

U_A

U_B

U_C

c_1

c_2

c_3

c_4

t_1

t_2

t_3

t_4

$T-Tc$
... increase discretionary free time by diminishing available income
The value of travel time savings

\[V_i = \alpha_i + \beta c_i + \gamma t_i + \ldots \]

\[VTTS = \frac{\partial V_i / \partial t_i}{\partial V_i / \partial c_i} = \frac{\gamma}{\beta}. \]

What lies behind the VTTS?

Examine the underlying microeconomic theory
Towards travel time value: the discrete choices paradigm

\[
\begin{align*}
\max_{X,j} U(X, Q_j) \\
\sum_{j \in M} P_i X_i + c_j &\leq I \\
\sum_{j \in M} P_i X_i &\leq I - c_j
\end{align*}
\]

\[
\Rightarrow \quad X^*(P, Q_j, I - c_j)
\]

conditional demands

\[
U[X^*(P, Q_j, I - c_j), Q_j] = V(P, Q_j, I - c_j) \equiv V_j
\]

Conditional Indirect Utility Function (truncated)

\[
\max_{j \in M} V(P, Q_j, I - c_j) \rightarrow \quad V_k \neq V_L \quad \forall_{k,L \in M}
\]

\[
MUI = \lambda = \frac{\partial V}{\partial I} = -\frac{\partial V_j}{\partial c_j}
\]

Marginal Utility of Income

\[
SVq_{ji} = \frac{\partial V_j / \partial q_{ji}}{\partial V_j / \partial I}
\]

Subjective Values
Towards travel time value: Becker’s model (1965)

- \(\text{Max } U(Z) \quad Z(X, T) \)

1. \(\sum P_i X_i = wW \)
2. \(\sum T_j + W = \tau \)

- Replacing (2) in (1)
 \(\sum P_i X_i + w \sum T_j = \tau w \)

- “Time can be converted into money...”
- All activities “value” \(w \)
Discrete mode choice (Train and McFadden, 1978)

\[
\begin{align*}
\text{Max } U(G, L) = & \max_{i \in M} \{ \max W U[G(W, C_i), L(W, t_i)] \} \\
G + c_i = wW + E & \\
W + L + t_i = T & \\
U_i = & U[G(W^*, C_i), L(W^*, t_i)] \\
\text{if } U(G, L) = & K G^{1-\beta} L^\beta
\end{align*}
\]

\[
U_i = K(1-\beta)^{1-\beta} \beta^\beta \left[w^{-\beta} (E - c_i) + w^{1-\beta} (T - t_i) \right]
\]

\[
V_i = -w^{-\beta} C_i - w^{1-\beta} t_i
\]

TCIUF

\[
WPSTT = \frac{\partial V_i / \partial t_i}{\partial V_i / \partial c_i} = w
\]

Value of Time = w
V = U + ε
Why diminish Travel Time?

Value of diminishing Travel Time = Value of performing another activity + Perception of travel itself
De Serpa’s Model (1971)

Max \(U = (X_1, \ldots, X_n, T_1, \ldots, T_n) \)

\[
\sum_{i=1}^{n} P_i X_i = w T_w + I_f \rightarrow \lambda
\]

\[
\sum_{i=1}^{n} T_i = \tau
\]

\(T_i \geq a_i X_i \quad i = 1, \ldots, n \)

Value of time as a resource:
\[
\frac{\mu}{\lambda} = \frac{\partial U / \partial T_i}{\lambda}
\]

Value of time as a commodity:
\[
\frac{\partial U / \partial T_i}{\lambda}
\]

Value of saving time in activity \(i \):
\[
\frac{\kappa_i}{\lambda} = \frac{\mu}{\lambda} - \frac{\partial U / \partial T_i}{\lambda}
\]

\[
\frac{\mu}{\lambda} = w + \frac{\partial U / \partial T_w}{\lambda}
\]
What is behind the willingness to pay to save travel time (WPSTT)?

\[
\frac{\kappa_i}{\lambda} = \frac{\mu}{\lambda} - \frac{\partial U / \partial T_i}{\lambda}
\]

\[
\frac{\mu}{\lambda} = w + \frac{\partial U / \partial T_w}{\lambda}
\]

WPSTT

Value of performing another activity

Value of time assigned to travel

Value of Leisure

Wage rate

Value of Work

- Leisure
- Work
Max \[U = \Omega T^\theta_w T^\theta_t \prod_{i \in I} T^\theta_i \prod_{k \in K} X^\eta_k \]

\[wT_w - \sum_{k \in K} P_k X_k - c_t \geq 0 \rightarrow \lambda \]

\[\tau - T_w - T_t - \sum_{i \in I} T_i = 0 \rightarrow \mu \]

\[T_t - T_t^{MIN} \geq 0 \rightarrow \kappa \]

\[\mu = \frac{1 - 2\beta}{\lambda} \frac{(wT_w - c_t)}{1 - 2\alpha (\tau - T_w - T_t^{MIN})} \]

Transport time analysis being expanded towards all activities...
Corollaries

- Pleasant travel not enough for SVTTS to be negative

- $$\$\$$ → faster or more comfortable?

- Implicit solution for T_w

- Implicit equations for leisure activities?
A MODEL SYSTEM FOR ACTIVITY TIMES AND GOODS CONSUMPTION
(Jara-Díaz and Guerra, 2003)

Max \(U = \Omega T_{w}^{\theta} \prod_{i} T_{i}^{\theta} \prod_{k} X_{k}^{\eta} \)

\(I_{f} + wT_{w} - \sum_{k} P_{k} X_{k} \geq 0 \rightarrow \lambda \)

\(\tau - T_{w} - \sum_{i} T_{i} = 0 \rightarrow \mu \)

\(T_{i} - T_{i}^{\text{Min}} \geq 0 \quad \forall i \rightarrow \kappa_{i} \)

\(X_{k} - X_{k}^{\text{Min}} \geq 0 \quad \forall k \rightarrow \varphi_{k} \)

Value of leisure = \(\frac{\mu}{\lambda} = \frac{(1-2\beta)(wT_{w}^* - E_c)}{(1-2\alpha)(\tau - T_{w}^* - T_c)} \)

Value of work = \(\frac{\partial U}{\partial T_{w}} = \frac{(2\alpha + 2\beta - 1)(wT_{w}^* - E_c)}{(1-2\alpha)T_{w}^*} \)

\(\frac{\mu}{\lambda} = w + \frac{\partial U}{\partial T_{w}} \)

\(T_{w}^* = \left[(\tau - T_c) \beta + \frac{E_c}{w} \alpha \right] + \sqrt{\left[(\tau - T_c) \beta + \frac{E_c}{w} \alpha \right]^2 - \frac{E_c}{w} (2\alpha + 2\beta - 1)(\tau - T_c)} \)

\(T_{i}^* = \frac{\tilde{\theta}_{i}}{(1-2\beta)(\tau - T_{w}^* - T_c)} \quad \forall i \in I \)

\(X_{k}^* = \frac{\tilde{\eta}_{k} (wT_{w}^* - E_c)}{P_{k} (1-2\alpha)} \quad \forall k \in K \)

...towards a general time use model
Corollaries

- E_c and T_c play key role.
- Model requires observations involving complete work-leisure cycles.
- $T_i(E_c, T_c, w)$ system looks like a reduced form of a “structural equations” model.
- Values of work, leisure, travel and SVTTS can be calculated
- $T_w(E_c, T_c, w)$ equation is a more complete labor supply equation (goods-leisure particular case)
- Change in time assignment (labor and leisure activities) can be predicted after changes in E_c and/or T_c
- One can estimate the labor supply equation only (to get α and β) or a system of equations including up to N-1 unconstrained activities and up to M-1 unconstrained goods.

\[
\frac{\mu}{\lambda} = w + \frac{\partial U / \partial T_w}{\lambda} \quad \Rightarrow \quad \frac{\mu / \lambda}{w} + \frac{-(\partial U / \partial T_w)}{w} = 1
\]
Behind and beyond the willingness to pay to save travel time

\[
\frac{\kappa_i}{\lambda} = \frac{\mu}{\lambda} - \frac{\partial U / \partial T_i}{\lambda}
\]

\[
\frac{\mu}{\lambda} = w + \frac{\partial U / \partial T_w}{\lambda}
\]
Activity Patterns

- **Karlsruhe**
 - Home
 - Work
 - Out of home entertainment
 - Shopping and errands
 - Trips

- **Thurgau**
 - Same categories as Karlsruhe

- **Santiago**
 - Same categories as Karlsruhe
Values of time [US$/hour] (Jara-Diaz et al, 2008)

<table>
<thead>
<tr>
<th></th>
<th>Santiago</th>
<th>Karlsruhe</th>
<th>Thurgau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leisure</td>
<td>2.75</td>
<td>11.0</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>61.8</td>
<td>103.7</td>
<td>87.8</td>
</tr>
<tr>
<td>Work</td>
<td>-1.70</td>
<td>0.4</td>
<td>-3.7</td>
</tr>
<tr>
<td></td>
<td>38.2</td>
<td>-3.7</td>
<td>12.2</td>
</tr>
<tr>
<td>Wage rate</td>
<td>4.45</td>
<td>10.6</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>WPSATT</td>
<td>3.49</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>VTT</td>
<td>-0.74</td>
<td>-27.5</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>21.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Entertainment Pattern by gender

- Karlsruhe*
 - DÍA LABORAL
 - SÁBADO
 - DOMINGO

- Thurgau*

- Santiago

Men

Women
Value of work as a percentage of the wage rate in Santiago (Jara-Diaz, Munizaga and Olguín, 2013)
So far

- Understanding utility as a **TCIUF** facilitates specification and interpretation (and avoids misinterpretations)

- Behind the **TCIUF** always is a system of activities and goods consumption equations

- Gross classification of activities:
 a. Those one would like to increase but can not because of time budget (leisure);
 b. Those one would like to decrease but can not because of technical constraints;
 c. Work and others.

- For b-type activities, Value of reduction = value of doing something else + value of diminishing mandatory time assigned.

- Observed Time Use in work-leisure cycles permits empirical estimations of these values of time using econometric models: transport (four decades), activities.

- Applications so far (Santiago, Karlsruhe, Thurgau, U.S.A.) show that:
 - Value of work time can be positive or negative.
 - Value of leisure can be different from the wage rate.
 - Increasing available time can be more important than travel displeasure.
 - Better to use segments than include socio-demographic variables in U.
Time Use Literature

Perspectives
- Historical
- Disciplinary
- Analytical

Types of Analysis
- Conceptual-Theoretical
- Data collection
- Descriptive Data
- Modeling

Activity emphasis
- Paid Work
- Unpaid Work
- Leisure
- Tertiary activities
- Overall Time Use
REVEALED WILLINGNESS TO PAY FOR LEISURE
(Jara-Díaz and Astroza, 2013)

\[
\frac{\partial U}{\partial T_R} + \frac{\partial U}{\partial X_R} \frac{\partial g_R}{\partial T_R} = \frac{\mu}{\lambda} + RWPL
\]

Link Between Structural and Microeconomic Models of Time Use
Introducing relations between activities and goods consumption in microeconomic time use models
(Jara-Díaz et al., 2015)

\[\text{Max } U(T, X) = \Omega T^\theta_w \prod_i T^\theta_i \prod_j X^{\varphi_j} \]

\[\text{s.t. } wT + I - \sum_j P_j X_j - c_f \geq 0 \quad (\lambda) \]

\[\tau - T - \sum_i T_i = 0 \quad (\mu) \]

\[T_i - T_i^{\min} \geq 0 \quad \forall i \quad (\kappa_i) \]

\[X_j - \alpha_j T_j \geq 0 \quad \forall j \quad (\psi_j) \]
For max LL estimation, consider stochastic error terms on equations:

\[
\frac{\theta_w}{T_w} + \frac{\varphi w}{w T_w - E_c' - \sum_{j \in G^R \cap A^f} P_j \alpha_j T_j} - \frac{\theta}{\tau - T_w - T_c - \sum_{k \in G^R \cap A^f} T_k} = u_1
\]

\[
\frac{\tilde{\theta}_k}{T_k} - \frac{\theta}{\tau - T_w - T_c - \sum_{k \in G^R \cap A^f} T_k} - \frac{\varphi P_k \alpha_k}{w T_w - E_c' - \sum_{j \in G^R \cap A^f} P_j \alpha_j T_j} = u_k
\]

\[
\tilde{\theta}_k = \theta_k + \varphi_k
\]

Define \(l=1\) for work and \(l=2,\ldots,L\) for activities in \(G^R \cap A^f\) \((L = |G^R \cap A^f|)\)

\[
f_l(T_1, \ldots, T_{L+1}) = u_l \quad l = 1, 2, \ldots, L + 1
\]

\[
u = (u_1, u_2, \ldots, u_{L+1})' \sim MVN_{L+1}(\mathbf{0}, \Omega)
\]
\[\text{Max} U = \Omega T_w^{\theta_w} \prod_i T_i^{\theta_i} \prod_d (T_d + T_{d_0})^{\theta_d} \prod_j X_j^{\phi_j} \prod_d Z_d^{\phi_d} \]

\[I + wT_w - \sum_d P_d (\sigma_d [T_d + T_{d_0}] + o_d H_d) - \sum_j P_j X_j - \sum_d s_d H_d - c_f \geq 0 \leftarrow \lambda \]

\[\tau - T_w - \sum_d T_d - \sum_d T_{d_0} - \sum_i T_i = 0 \leftarrow \mu \]

\[T_i - T_i^{\text{min}} \geq 0 \leftarrow \kappa_i \quad \forall i \]

\[X_j - X_j^{\text{min}} \geq 0 \leftarrow \eta_j \quad \forall j \]

\[(\epsilon_d [T_d + T_{d_0}] + \psi_d H_d) - Z_d = 0 \leftarrow \gamma_d \quad \forall d \]

\[\text{Value of leisure} = \frac{\mu}{\lambda} = \frac{\Theta (wT_w - E_e - E_d P_d (\sigma_d [T_d + T_{d_0}] + o_d H_d) - \sum_d s_d H_d)}{\Phi (\tau - T_w - \sum_d T_d - T_c)} \]

\[\text{Value of work} = \frac{\partial U}{\partial T_w} = \frac{\mu}{\lambda} - w \]

Pollak and Wachter (1975) Becker (1965)
Reid (1934)
Model estimation results for all individuals in all waves

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Wave 1</th>
<th>Wave 2</th>
<th>Wave 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Std. Dev</td>
<td>Estimate</td>
<td>Std. Dev</td>
</tr>
<tr>
<td>Value of Leisure</td>
<td>28.926</td>
<td>42.494</td>
<td>38.607</td>
<td>39.388</td>
</tr>
<tr>
<td>Value of Work</td>
<td>13.802</td>
<td>46.331</td>
<td>25.387</td>
<td>38.027</td>
</tr>
<tr>
<td>Ratio VoL - wage</td>
<td>1.913</td>
<td>2.920</td>
<td>1.020</td>
<td></td>
</tr>
<tr>
<td>Ratio VoW - wage</td>
<td>0.913</td>
<td>1.920</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>301</td>
<td>101</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>

Base model estimation results with no external agent, childcare as committed expenses and committed time (larger overestimation if considered free)

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Wave 1</th>
<th>Wave 2</th>
<th>Wave 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>t-stat</td>
<td>Estimate</td>
<td>t-stat</td>
</tr>
<tr>
<td>Value of Leisure</td>
<td>39.117</td>
<td>2.875</td>
<td>46.722</td>
<td>3.155</td>
</tr>
<tr>
<td>Value of Work</td>
<td>23.994</td>
<td>2.535</td>
<td>33.503</td>
<td>2.758</td>
</tr>
<tr>
<td>Wage Rate</td>
<td>15.124</td>
<td>13.219</td>
<td>16.057</td>
<td>16.107</td>
</tr>
<tr>
<td>Ratio VoL - wage</td>
<td>2.59</td>
<td>3.53</td>
<td>1.73</td>
<td>2.38</td>
</tr>
<tr>
<td>Ratio VoW - wage</td>
<td>1.59</td>
<td>2.53</td>
<td>0.73</td>
<td>1.38</td>
</tr>
<tr>
<td>Sample size</td>
<td>301</td>
<td>101</td>
<td>86</td>
<td>114</td>
</tr>
</tbody>
</table>
Conclusions

Travel time importance has been detected with choice models that represent a combination of the microeconomics of discrete choices and time use theories. The interpretation of travel time values depend on this underlying micro-framework.

Behind the WPSTT there are two components: relocation of time and perception of travel itself. Which one dominates is relevant. The estimation from discrete travel choice models includes both.

The value(s) of relocating time require the estimation of time use models. Data is an issue, but discussion on specification, segmentation, estimation and interpretation is equally important.

Combining time use data analysis and disciplinary contributions within time use modeling approaches has great potential but has not been explored exhaustively. The value of household production and domestic work, and the effect of the trade-off between work and non-work activities such as leisure should allow a better estimation and improve the interpretation of the value(s) of time.

Time use analysis is a relevant part of the agenda on Transport Research
Beyond Transport Time: modeling time use, understanding time values.

Sergio Jara-Díaz
Universidad de Chile
EL BELLO SINO DE ARGOS JERIA

Sergio Jara Díaz