Developing an Integrated Transportation Infrastructure Decision Support Platform:

Big & Open Data Visualization

Meead Saberi
Monash University, Melbourne, Australia
meead.saberi@monash.edu
MEET THE TEAM

Majid Sarvi (Civil Eng., Monash University)
Meead Saberi (Civil Eng., Monash University)
Terry Liu (Civil Eng., Monash University)
Freider Seible (Civil Eng., Monash University)
Colin Caprani (Civil Eng., Monash University)
Jayantha Kodikara (Civil Eng., Monash University)
Chris Rudiger (Civil Eng., Monash University)
Omid Ejtemai (Civil Eng., Monash University)

Mark Stevenson (MUARC, Monash University)
Mehmet Yuce (Electrical Engineering, Monash University)
Kim Marriott (Information Technology, Monash University)

Russel Thompson (University of Melbourne)
Abbas Rajabifard (University of Melbourne)
What is a Decision Support System (DSS)?

DSS is a computer-based system that supports decision-making; usually aimed at less well-structured and underspecified problems that upper level managers typically face.

DSS attempts to combine the use of models and analytical techniques with traditional or advanced data access; focuses on features which make them easy to use by non-expert people in an interactive mode.

Source: Sprague (1980)
Fundamental Components of a DSS

Database

Model

User Interface
Current State-of-the-Art

Existing transportation models/decision support systems are mostly disconnected.

There is no fully integrated *unifying tool* for planning, operations, and management analyses.

Current major focus is on integration of supply and demand models (e.g. ABM-DTA integration).

Examples: POLARIS, MATSim, CMAP ABM-DTA integrated model, etc.
Vision: *Full Integration*

A fully integrated system goes beyond supply and demand models only. It integrates with **real-time data**, take advantage of **big data** and existing **ICT technologies**, and provide a fully **connected modeling environment**.
Developing a fully integrated decision support platform
@ITS MONASH, Australia

Integrated understanding of multimodal traffic, land use, urban form, transportation planning needs, public health, safety, welfare, social interactions, demographics and communities.
What’s special about our DSS?

- Developing a unifying tool with operational, planning, and management applications in many areas.
- Offline/online **data integration**, communication with a **network of sensors**, and utilization of advanced **ICT technologies**.
- Applying advanced **vizualisation, optimization** and **computational techniques** to tackle issues of tomorrow’s transportation systems.
- The goal is to assist in better management of complex integrated transportation and urban infrastructure systems in **Victoria, Australia** (as a starting point).
Schematic Illustration of our DSS

- Multimodal Transport Infrastructure Planning, Simulation, and Modelling Core
- Big Data Analytics
 - Machine Learning
 - Cloud & High Performance Computing
- Data Fusion & Integration
 - Offline/Online Data
 - Real-Time Sensor Network Data
 - Crowd-sourced Citizen Generated Data
 - Demographic data
 - Socio-Economic data
 - Census data
 - Road network data
 - Public transport data
 - Rail network data
 - Freight data
 - Land-use data
 - Crash data
 - Weather data
 - Bridge condition data
 - Pavement data
 - Traffic data
 - etc.

- Advanced Programming Interface (API)
 - ICT-enhanced Pavement Management and Optimisation Model,
 - Advanced Network Safety and Public Health Model,
 - Road Space Management and Optimisation Model,
 - Transport Network Resilience and Disaster Model, and etc.

- Web-based Interactive Visualisation
- Immersive Visualisation (CAVE)

Evaluation of current condition and prediction of future status of transport infrastructure system.

- Evidence-based policy making,
- What if scenario analysis,
- Economic impact,
- Environmental impact, and etc.
Real-Time Sensor Network Data
Bushfire is a big issue in Australia.

Australian National Bushfire Monitoring System

A network of sensors (for fire detection) are developed to collect and transmit data to the platform wirelessly.
Crowd-Sourced Data
Mobile App: “Victoria Connect”

- We’ve developed a mobile app which allows citizens to report various types of “usually un-reported” data.
- Crowd-sourced data are combined with authoritative data.
- Integrated data are visualized and shared publicly with citizens.
- Integrated data are used in optimizing transportation network operations and planning.
Cloud Data Integration

- Developing an online integrated database in a government-funded cloud (NECTAR). *(ongoing)*
- Developing online visualizations, accessing data from the cloud in real-time. *(ongoing)*
- Cloud computing. *(future)*
How does our database look like now?

No user interface yet.
We’re working on the back end.
Network Simulation and Modeling Core

- Developing a multimodal DTA model of Melbourne metropolitan area. (ongoing)
- Auto-calibration using various traffic counts and travel time data sources. (ongoing)
- Dynamic OD estimation. (ongoing)
- Integration with an ABM. (future)
Connected Modeling Environment

- Crash frequency prediction (ongoing)
- Network reliability and resilience; critical link identification (ongoing)
- Land use model (future)
- Public health model (future)
- and many more …

Advanced Programming Interface (API)
- ICT-enhanced Pavement Management and Optimisation Model,
- Advanced Network Safety and Public Health Model,
- Road Space Management and Optimisation Model,
- Transport Network Resilience and Disaster Model, and etc.
Interactive Visualization

Web-based Interactive Visualisation
Visualizing Population Growth
Visualizing Ethnicity Distribution

Interested to see how Chicago and Washington D.C. look like?

Washington D.C. http://4.bp.blogspot.com/-_6KwMlIWucI/U8CEx39ydAI/AAAAAAAAl3U/MDUydp7Zk1g/s1600/DC.png

Chicago http://www.wired.com/images_blogs/design/2013/08/chicago.jpg
Visualizing Age Distribution
Visualizing Bicycles Crashes
Visualizing Housing Density
3D Immersive Visualization

Immersive Visualisation (CAVE)
What do we get out of the DSS?

Evaluation of **current condition** and prediction of **future status** of transport infrastructure system:

- Evidence-based policy making
- What if scenario analysis
- Economic impact
- Environmental impact, etc.
A second look at the bigger picture

Multimodal Transport Infrastructure Planning, Simulation, and Modelling Core

Data Fusion & Integration Offline/Online Data
- Demographic data
- Socio-Economic data
- Census data
- Road network data
- Public transport data
- Rail network data
- Freight data
- Land-use data
- Crash data
- Weather data
- Bridge condition data
- Pavement data
- Traffic data
- etc.

Real-Time Sensor Network Data
Crowd-sourced Citizen Generated Data

Big Data Analytics Machine Learning Cloud & High Performance Computing

Advanced Programming Interface (API)
- ICT-enhanced Pavement Management and Optimisation Model
- Advanced Network Safety and Public Health Model
- Road Space Management and Optimisation Model
- Transport Network Resilience and Disaster Model, and etc.

Web-based Interactive Visualisation

Immersive Visualisation (CAVE)

Evaluation of current condition and prediction of future status of transport infrastructure system.
- Evidence-based policy making,
- What if scenario analysis,
- Economic impact,
- Environmental impact, and etc.
Where we are today?

We’ve already developed the backbone of the DSS.

- **Wireless fire detection sensors** are developed and tested.
- **Mobile app** is developed and tested.
- **Cloud** instance is set up. We’re developing the database.
- **DTA model** of Melbourne is being developed.
- A few data **visualizations** are developed. More are coming.
- The network display at **CAVE2** is set up.
QUESTIONS

Meead Saberi
meead.saberi@monash.edu