Building Knowledge from Real-Time Sensor Information
BAC Industry Workshop 2013

Ogi Redzic
Vice President, Traffic and Automotive Cloud

April 24, 2013
Real-Time Transit Project Objectives

- Derive/Verify Transit System Artifacts from GPS Sensor Data
 - Route Geometries
 - Stop Locations
 - Schedules
- Monitor Transit Systems using GPS Sensor Data to Enable Integrated Real-Time Services
 - Real-Time Route Planning
 - Accurate Arrival Time Predictions
 - Passenger Service Alerts
 - Driver/Agency Notifications
 - Other Services

Create Better Transit Services through Enhanced Data Analytics and Methods

© HERE 2013 | BAC Industry Workshop 2013 | 2013-04-24 | Ogi Redzic
Real-Time Transit Project Overview

Transit Artifact Derivation

- Historic GPS Sensor Data
- Route Derivation
- Stop Derivation
- Schedule Derivation

Electronic Transit Sources

Transit Artifacts

Real-Time Services

- Arrival Time Predictions
- Route Deviations
- Schedule Deviations
- Bus Bunching
- Real-Time Route Planner

Agency Services

- Routes Maps
- Arrival Times
- Dashboards Reports

Dispatch Services

- Notifications

Real-Time GPS Sensor Data

Historic GPS Sensor Data

Initialize - Update
Building Knowledge from GPS Sensor Data

- Derive Route Geometries
- Derive Stop Locations along Routes
- Derive Schedules at Stops along Routes
- Predict Arrival Times for Vehicles at Stops along Routes

Based on Historic GPS Sensor Data

Route Derivation
- Route Geometries

Stop Derivation
- Stop Locations

Schedule Derivation
- Schedules

Based on Real-Time GPS Sensor Data

Arrival Time Predictions
- Arrival Times
Route Derivation

• Spatial Clustering of GPS Locations
• Outlier Suppression of Low Density Clusters
• Route Formation through Spatial/Temporal Cluster Ordering
• Refine Cluster Accuracy by Aligning Clusters to Road Network
• Refine Route Accuracy by Adding Intersections
Stop Derivation

- Uses Supervised Machine Learning Model based on
 - Mini-Clusters at Stop Points
 - Speed
 - Heading

- Training Set (Patterns) Observed in the Real World
 - Transit Stops vs.
 - Stop Signals vs.
 - Stop Signs vs.
 - Combination

- Model Seeded with Training Set
- Artifacts Computed on Most Likely Match
 - Resulting in 90% Accuracy for Stop Derivation
Schedule Derivation

- Separate GPS Data by Weekday & Weekend
- Cluster GPS Data Temporally (by Time)
- Align Time Clusters with Stops
- Based on the Number of Transit Runs for each Route, for each Stop Compute
 - Mean Arrival Times
 - Standard Deviation (Variances) of Arrival Times
Real-Time Service: Arrival Time Prediction

- Uses Adaptive Kalman Filter
- Dynamic Weighting Between Historic & Real-Time Arrival Times based on
 - Historic Variances (from Derived Schedules)
 - Real-Time Variances (Estimated)
- Accuracy of Predictions On-Par or Better than Agency Arrival Time Services
Real-Time Service: Bus Bunching

• Bus Bunching occurs when Buses on a Route are too close
 - Bus Bunching leads to *irregular* service
 - *Closeness* is a function of the length of the route and the number of buses on the route at a given instance in time

• Regulate Service via Monitoring & Driver Notifications
Summary

• Artifact derivation from GPS/sensor data produces accurate Transit Models
 - Enables Route Planning for Agencies without Electronic Sources
 - Provides more up-to-date Models for Agencies with Electronic Sources

• Monitoring Transit Vehicles from GPS/sensor data enables Real-Time Services
 - Enables seamless integration of Real-Time Data & Services
 - Provides Services On-Par or Better than Agency-provided Services
 - Optimizes System efficiencies thus increasing Customer Satisfaction