Flight Delays, Capacity Investment and Welfare under Air Transport Supply-demand Equilibrium

Bo Zou¹, Mark Hansen²

¹University of Illinois at Chicago
²University of California at Berkeley
Total economic impact of flight delay:
Total economic impact of flight delay: $32 billion in 2007
Total economic impact of flight delay: $32 billion in 2007

Means to mitigate flight delay

- Managing demand
Means to mitigate flight delay

- Managing demand
 - Congestion pricing
Means to mitigate flight delay

- Managing demand
 - Congestion pricing
 - Slot control
Means to mitigate flight delay

- Managing demand
 - Congestion pricing
 - Slot control

Means to mitigate flight delay

- Managing demand
 - Congestion pricing
 - Slot control

- Increasing supply
Outline

- Background
- Research Framework
- Equilibrium Model
- Conclusion
Benefits

- Airline Cost (↓)
- Passenger travel time (↓)

Flight Delay

Infrastructure Capacity (↑)

Investment

Directions:
- Background
- Framework
- Model 1
- Model 2
- Conclusion
Issues with the approach

Ceteris paribus assumption

Predicting future

Benefits
- Airline Cost (↓)
- Passenger travel time (↓)

Investment
- Infrastructure Capacity (↑)

Background
- Framework
- Model 1
- Model 2
- Conclusion

Flight Delay

(↓)
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Objective of the Research

Develop an innovative methodology to systematically capture supply-demand response to investment
Outline

- Background
- **Research Framework**
- Equilibrium Models
 - Airline competition model
 - User equilibrium model
- Conclusion
No congestion

Higher density

Higher flight frequency Lower unit cost

Improved service quality Lower fare

Reduced generalized cost

More demand
With congestion

Higher density

- Higher flight frequency
- Improved service quality

Lower unit cost

- Lower fare

Reduced generalized cost

More demand
Background

Framework

Model 1

Model 2

Conclusion

Unconstrained user supply

Demand

Generalized cost ($/passenger-mile)

Demand (passenger-miles)
Generalized cost ($/passenger-mile) vs. Demand (passenger-miles).

- Demand
- Constrained user supply
- Unconstrained user supply
Conventional view

- Investment → Infrastructure Capacity
 - Flight Delay

<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed framework

- Passenger Demand
- Flight Traffic
- Flight Delay
- Airline Cost
- Airfare

Investment → Infrastructure Capacity

Background Framework Model 1 Model 2 Conclusion
Proposed framework

- Passenger Demand
- Flight Traffic
- Airfare
- Flight Delay
- Airline Cost
- Maximizing Profit
- Investment
- Infrastructure Capacity
- Output

Background
Framework
Model 1
Model 2
Conclusion
Proposed framework

- Passenger Demand
- Flight Traffic
- Airfare
- Flight Delay
- Airline Cost
- Maximizing Profit
- Investment
- Infrastructure Capacity

Background
Framework
Model 1
Model 2
Conclusion

Output
Outline

- Background
- Research Framework
- **Equilibrium Models**
- Conclusion
Outline

- Background
- Research Framework
- Equilibrium Models
 - Airline competition model
 - User equilibrium model
- Conclusion

Consider a duopoly market
Consider a duopoly market

Utility of a representative individual

\[
U(q_0, q_1, q_2) = q_0 + \frac{\alpha_{00}}{\alpha_{01} - \alpha_{02}} (q_1 + q_2) - \frac{1}{2} \frac{1}{\alpha_{01} - \alpha_{02}} \left(\alpha_{01}q_1^2 + 2\alpha_{02}q_1q_2 + \alpha_{02}q_2^2 \right)
\]
Consider a duopoly market

Utility of a representative individual

\[U(q_0, q_1, q_2) = q_0 + \frac{\alpha_{00}}{\alpha_{01} - \alpha_{02}} (q_1 + q_2) - \frac{1}{2} \frac{1}{\alpha_{01}^2 - \alpha_{02}^2} (\alpha_{01}q_1^2 + 2\alpha_{02}q_1q_2 + \alpha_{01}q_2^2) \]

Consumption of numeraire goods
Consider a duopoly market

Utility of a representative individual

\[
U(q_0, q_1, q_2) = q_0 + \frac{\alpha_{00}}{\alpha_{01} - \alpha_{02}} (q_1 + q_2) - \frac{1}{2} \frac{1}{\alpha_{01}^2 - \alpha_{02}^2} (\alpha_{01}q_1^2 + 2\alpha_{02}q_1q_2 + \alpha_{01}q_2^2)
\]

Consumption of airline 1’s service
Consider a duopoly market

Utility of a representative individual

$$U(q_0, q_1, q_2) = q_0 + \frac{\alpha_{00}}{\alpha_{01} - \alpha_{02}} (q_1 + q_2) - \frac{1}{2} \frac{1}{\alpha_{01}^2 - \alpha_{02}^2} (\alpha_{01} q_1^2 + 2 \alpha_{02} q_1 q_2 + \alpha_{02} q_2^2)$$

Consumption of airline 2’s service
Consider a duopoly market

Utility of a representative individual

\[U(q_0, q_1, q_2) = q_0 + \frac{\alpha_{00}}{\alpha_{01} - \alpha_{02}} (q_1 + q_2) - \frac{1}{2} \frac{1}{(\alpha_{01} - \alpha_{02})^2} (\alpha_{01}q_1^2 + 2\alpha_{02}q_1q_2 + \alpha_{01}q_2^2) \]

\[\alpha_{00}, \alpha_{01}, \alpha_{02}: \text{parameters} \quad (\alpha_{01} \geq \alpha_{02}) \]
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

\[
\max U(q_0, q_1, q_2)
\]

\[
s.t. \quad q_0 + \bar{P}_1 q_1 + \bar{P}_2 q_2 \leq I
\]
Generalized cost for choosing airline 1

Maximize $U(q_0, q_1, q_2)$ subject to:

$$q_0 + \overline{P}_1 q_1 + \overline{P}_2 q_2 \leq I$$

Generalized cost for choosing airline 1
\[
\begin{align*}
\max U(q_0, q_1, q_2) \\
\text{s.t. } & q_0 + \bar{P}_1q_1 + \bar{P}_2q_2 \leq I
\end{align*}
\]

Generalized cost for choosing airline 2
\[
\max U(q_0, q_1, q_2)
\]
\[
s.t. \quad q_0 + \overline{P}_1 q_1 + \overline{P}_2 q_2 \leq I
\]
\[
\overline{P}_i = P_i + \frac{\gamma}{f_i} + kL \quad i = 1, 2
\]
Demand

\[
\max U(q_0, q_1, q_2)
\]

s.t. \(q_0 + P_1 q_1 + P_2 q_2 \leq I \)

\[
\bar{P}_i = P_i + \frac{\gamma}{f_i} + kL \quad i = 1,2
\]
Maximization Problem

\[
\max U(q_0, q_1, q_2)
\]

Subject to

\[
q_0 + \bar{P}_1 q_1 + \bar{P}_2 q_2 \leq I
\]

\[
\bar{P}_i = P_i + \frac{\gamma}{f_i} + kL \quad i = 1, 2
\]
\[\max U(q_0, q_1, q_2) \]

s.t.
\[q_0 + P_1 q_1 + P_2 q_2 \leq I \]

\[\bar{P}_i = P_i + \frac{\gamma}{f_i} + kL \quad i = 1, 2 \]
\[\max U(q_0, q_1, q_2) \]

s.t. \[q_0 + \bar{P}_1 q_1 + \bar{P}_2 q_2 \leq I \]

\[\bar{P}_i = P_i + \frac{\gamma}{f_i} + kL \quad i = 1,2 \]

- Airfare
- Schedule delay
- Delay

Composite of income and travel time constraints
Individual demand

\[q_i = \alpha_{00} - \alpha_{01}P_i + \alpha_{02}P_{-i} - \frac{\alpha_{01}}{f_i} + \frac{\alpha_{02}}{f_{-i}} - (\alpha_{01} - \alpha_{02})kL, \quad i = 1, 2 \]

\(\alpha_{01} \geq \alpha_{02} \)
Individual demand

\[q_i = \alpha_{00} - \alpha_{01}P_i + \alpha_{02}P_{-i} - \frac{\alpha_{01} \gamma}{f_i} + \frac{\alpha_{02} \gamma}{f_{-i}} - (\alpha_{01} - \alpha_{02})kL, \quad i = 1, 2 \]

\[(\alpha_{01} \geq \alpha_{02}) \]

Market demand

\[Q_i = \alpha_0 - \alpha_1P_i + \alpha_2P_{-i} - \frac{\alpha_1 \gamma}{f_i} + \frac{\alpha_2 \gamma}{f_{-i}} - \mu L, \quad i = 1, 2 \]

\[(\alpha_1 \geq \alpha_2) \]
Flight operating cost for trip i

$$C_i = c_0 + \tau s_i + \eta s_i L$$
Flight operating cost for trip i

$$C_i = c_0 + \tau s_i + \eta s_i L$$

Fixed cost
Flight operating cost for trip i

$$C_i = c_0 + \tau s_i + \eta s_i L$$

- Fixed cost
- Variable cost as a function of aircraft size s
Flight operating cost for trip i

$$C_i = c_0 + \tau s_i + \eta s_i L$$

- **Fixed cost**
- Variable cost as a function of aircraft size s
- Delay cost as a function of aircraft size s and delay L
Flight operating cost for trip i

$$C_i = c_0 + \tau s_i + \eta s_i L$$

- Fixed cost
- Variable cost as a function of aircraft size s
- Delay cost as a function of aircraft size s and delay L
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

- Assumption: each flight is full
Assumption: each flight is full

\[Q_i = f_i \cdot s_i \]

- Passenger demand
- Flight frequency
- Aircraft size
\[\max \pi_i = P_i \cdot Q_i - f_i \cdot C_i \quad \text{for } i = 1, 2 \]
\[
\text{max } \pi_i = P_i \cdot Q_i - f_i \cdot C_i \quad \text{for } i = 1, 2
\]

- Airfare
- Passenger demand
- Flight frequency
- Operating cost per flight
Assume

- airlines compete on fare and frequency simultaneously in a Nash fashion

\[
\frac{\partial \pi_i}{\partial P_i} = 0 \quad \frac{\partial \pi_i}{\partial f_i} = 0 \quad i = 1, 2
\]
Assume

- airlines compete on fare and frequency simultaneously in a Nash fashion

\[\frac{\partial \pi_i}{\partial P_i} = 0 \quad \frac{\partial \pi_i}{\partial f_i} = 0 \quad i = 1, 2 \]

- Symmetric airlines

\[P_1 = P_2 = P \quad f_1 = f_2 = f \]
Price response

\[
P = \frac{\alpha_0 + \alpha_1 \tau}{2\alpha_1 - \alpha_2} - \frac{(\alpha_1 - \alpha_2)\gamma}{2\alpha_1 - \alpha_2} - \frac{\mu L}{2\alpha_1 - \alpha_2} + \frac{\alpha_1 \eta L}{2\alpha_1 - \alpha_2}
\]
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

Price response

\[
P = \frac{\alpha_0 + \alpha_1 \tau}{2\alpha_1 - \alpha_2} - \frac{(\alpha_1 - \alpha_2)\gamma}{2\alpha_1 - \alpha_2} - \frac{\mu L}{2\alpha_1 - \alpha_2} + \frac{\alpha_1 \eta L}{2\alpha_1 - \alpha_2}
\]
Price response

\[P = \frac{\alpha_0 + \alpha_1 \tau}{2\alpha_1 - \alpha_2} \left(\frac{f}{2\alpha_1 - \alpha_2} \right) \frac{(\alpha_1 - \alpha_2) \gamma}{2\alpha_1 - \alpha_2} - \frac{\mu L}{2\alpha_1 - \alpha_2} + \frac{\alpha_1 \eta L}{2\alpha_1 - \alpha_2} \]

- Constant
- Frequency effect on WTP
Price response

\[P = \frac{\alpha_0 + \alpha_1 \tau}{2\alpha_1 - \alpha_2} \left(\frac{(\alpha_1 - \alpha_2)\gamma}{f} \right) \left(\frac{\mu L}{2\alpha_1 - \alpha_2} \right) + \frac{\alpha_1 \eta L}{2\alpha_1 - \alpha_2} \]

- Constant
- Frequency effect on WTP
- Delay effect on WTP
Price response

\[
P = \frac{\alpha_0 + \alpha_1 \tau}{2 \alpha_1 - \alpha_2} \left(\frac{(\alpha_1 - \alpha_2) \gamma}{f} \right) + \frac{\mu L}{2 \alpha_1 - \alpha_2} + \frac{\alpha_1 \eta L}{2 \alpha_1 - \alpha_2}
\]

- **Constant**
- **Frequency effect on WTP**
- **Delay effect on WTP**
- **Airline delay cost passed onto passengers**

<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>Framework</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Conclusion</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

Compare equilibrium with and without congestion
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

Compare equilibrium with and without congestion

- With congestion
 - Frequency (↓)
Compare equilibrium with and without congestion

- With congestion
 - Frequency (↓)
 - Passenger generalized cost (↑)
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td></td>
<td>Equilibrium shift</td>
</tr>
</tbody>
</table>

Compare equilibrium with and without congestion

- **With congestion**
 - Frequency (↓)
 - Passenger generalized cost (↑)
 - Passenger demand (↓)
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

Compare equilibrium with and without congestion

- **With congestion**
 - Frequency (↓)
 - Passenger generalized cost (↑)
 - Passenger demand (↓)
 - Fare (?)
 - Aircraft size (?)
 - Unit operating cost per passenger (?)
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td></td>
<td>Equilibrium shift</td>
</tr>
</tbody>
</table>

Simulation analysis
Simulation analysis

Assumption about airport delay L

- Delay on a market is determined by the more congested airport

- N independent and identical markets into that airport
Simulation analysis

Assumption about airport delay \(L \)

\[
L = \delta \left[N \left(f_1 + f_2 \right) \right] / K^\theta, \quad \theta > 1
\]
Simulation analysis

- Assumption about airport delay L

$$L = \delta [N(f_1 + f_2) / K]^\theta, \quad \theta > 1$$

- All other parameters derived from empirical evidence
<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Fare</th>
<th>Aircraft size</th>
<th>Unit operating cost ($/passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite capacity (no delay)</td>
<td>98.9</td>
<td>63.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Finite capacity (720 operations per day, with delay)</td>
<td>96.0</td>
<td>71.9</td>
<td>91.5</td>
</tr>
</tbody>
</table>
Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Fare</th>
<th>Aircraft size</th>
<th>Unit operating cost ($/passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite capacity (no delay)</td>
<td>98.9</td>
<td>63.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Finite capacity (720 operations per day, with delay)</td>
<td>96.0</td>
<td>71.9</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Decreased WTP dominates airlines’ tendency to pass part of the delay cost to passengers
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Fare</th>
<th>Aircraft size</th>
<th>Unit operating cost ($/passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite capacity (no delay)</td>
<td>98.9</td>
<td>63.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Finite capacity (720 operations per day, with delay)</td>
<td>96.0</td>
<td>71.9</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Use larger planes to avoid high delays
<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Fare</th>
<th>Aircraft size</th>
<th>Unit operating cost ($/passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite capacity (no delay)</td>
<td>98.9</td>
<td>63.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Finite capacity (720 operations per day, with delay)</td>
<td>96.0</td>
<td>71.9</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Delay cost partially offset by economies of aircraft size.
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td></td>
<td>Equilibrium shift</td>
</tr>
</tbody>
</table>

Comparison between equilibrium and conventional approaches
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

- Increase airport capacity by 50%
Increase airport capacity by 50%

Conventional

Equilibrium

Airport delay saving (min/flight)
Increase airport capacity by 50%

Conventional

Airport delay saving (min/flight)

Equilibrium

Equilibrium shift

Model 1

Model 2

Conclusion

Demand

Supply

Equilibrium

Equilibrium

Consumer surplus (million$)

- Conventional
 - 5.6
 - Equilibrium 4.7

- Equilibrium
 - 163

- Conventional
 - 70

- Equilibrium
 - 76
Outline

- Background
- Research Framework
- **Equilibrium Models**
 - Airline competition model
 - User equilibrium model
- Conclusion
Introduction of basic concepts

Route
Segment
Market

Spoke city A
Spoke city B
Hub city C

Segment AB
Segment AC
Segment CB

Non-stop Route
One-stop Route
Demand estimation
Nest structure

User equilibrium formulation

\[\text{Demand} = G_1(\text{Fare, Flight Traffic, Airport delay}) \]

\[s.t. \quad \text{Constraints} \]
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

- **Passenger Demand**
- **Flight Traffic**
- **Airfare**
- **Flight Delay**
- **Airline Cost**
- **Maximizing Profit**

Investment

Infrastructure Capacity

Output
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>

Flight traffic $= G_2(\text{Demand, Airport Delay})$

Fare $= G_3(\text{Demand, Airport delay})$

Airport delay $= G_4(\text{Flight traffic})$

Zou, B., Hansen, M. *Flight Delay Impact on Airfare and Flight Frequency: A Comprehensive Assessment.* Paper to be submitted to Transportation Research Part A.
Flight traffic = $G_2(\text{Demand, Airport delay})$

Fare = $G_3(\text{Demand, Airport delay})$

Airport delay = $G_4(\text{Flight traffic})$
User equilibrium formulation

\[\text{Demand} = G_1(\text{Fare}, \text{Flight Traffic, Airport delay}) \]

\textit{s.t.} \hspace{1cm} \text{Flight traffic} = G_2(\text{Demand, Airport delay})

\hspace{1cm} \text{Fare} = G_3(\text{Demand, Airport delay})

\hspace{1cm} \text{Airport delay} = G_4(\text{Flight traffic})
Simultaneous equation system

Demand = G₁(Fare, Flight Traffic, Airport delay)

Flight traffic = G₂(Demand, Airport delay)

Fare = G₃(Demand, Airport delay)

Airport delay = G₄(Flight traffic)
Simulation analysis

<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td></td>
</tr>
</tbody>
</table>
Network

Demand
Supply
Equilibrium
Equilibrium shift

400 miles
Network
Spoke-spoke market demand

- 0-stop
- 1-stop
Total demand is low because the distance is too short.
Spoke-spoke market demand

1-stop routes more attractive because of reduced **circuity** (actually distance/OD distance)

Background	Framework	Model 1	**Model 2**	Conclusion
Demand | Supply | **Equilibrium** | Equilibrium shift | Conclusion
Spoke-spoke segment frequency

Flights/quarter vs. Segment Distance (miles)
<table>
<thead>
<tr>
<th>Delay (min/flight)</th>
<th>Hub</th>
<th>Spoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>26.5</td>
<td>11.6</td>
</tr>
</tbody>
</table>
Increase hub capacity by 50%

<table>
<thead>
<tr>
<th>Delay (min/flight)</th>
<th>Hub</th>
<th>Spoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>26.5</td>
<td>11.6</td>
</tr>
</tbody>
</table>
Increase hub capacity by 50%

<table>
<thead>
<tr>
<th>Delay (min/flight)</th>
<th>Hub</th>
<th>Spoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>26.5</td>
<td>11.6</td>
</tr>
<tr>
<td>After</td>
<td>17.5</td>
<td>11.4</td>
</tr>
</tbody>
</table>
Spoke-spoke market demand shift

- 0-stop (before)
- 1-stop (before)
- 0-stop (after)
- 1-stop (after)

Demand vs. O-D Distance (miles)

Demand:
- 0-stop (before)
- 1-stop (before)
- 0-stop (after)
- 1-stop (after)

O-D Distance (miles):
- 0
- 200
- 400
- 600
- 800

Total spoke-spoke market demand

- Before
- After

Induced demand

Model 1
Model 2
Conclusion
Spoke-spoke segment frequency change

- Before
- After

Flights/quarter vs. Segment Distance (miles)
Spoke-hub segment frequency change

- Background
- Framework
- Model 1
- Model 2
- Conclusion

<table>
<thead>
<tr>
<th>Flights/quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
</tr>
<tr>
<td>After</td>
</tr>
</tbody>
</table>

Demand Supply Equilibrium Equilibrium shift
Consumer surplus change per air travel decision making
<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Supply</td>
<td>Equilibrium</td>
<td>Equilibrium shift</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Comparison between equilibrium and conventional approaches
Model

Equilibrium shift

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Hub delay savings

(min/flight)
Model

<table>
<thead>
<tr>
<th>Demand</th>
<th>Supply</th>
<th>Equilibrium</th>
<th>Equilibrium shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>14.2</td>
<td>Equilibrium</td>
<td>9.0</td>
</tr>
<tr>
<td>Hub delay savings (min/flight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>69.5</td>
<td>Equilibrium</td>
<td>218.4</td>
</tr>
<tr>
<td>Passenger welfare gain (million$/qtr)</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Framework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibrium Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airline competition model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User equilibrium model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- An equilibrium framework
Summary

- An equilibrium framework
- Larger and broader benefits
Summary

- An equilibrium framework
- Larger and broader benefits
- Additional insights
 - Delay triggers investment
Summary

- An equilibrium framework
- Larger and broader benefits
- Additional insights
 - Delay triggers investment
 - Returns more than delay savings
Summary

- An equilibrium framework
- Larger and broader benefits
- Additional insights
 - Delay triggers investment
 - Returns more than delay savings
 - Delay reduction less than expected
Summary

- An equilibrium framework
- Larger and broader benefits
- Additional insights
 - Delay triggers investment
 - Returns more than delay savings
 - Delay reduction less than expected
 - Investment paradox: some markets can be worse off
Extensions

<table>
<thead>
<tr>
<th>Background</th>
<th>Framework</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

113
Extensions

- Infrastructure investment decision making
 - Size, location, timing
Extensions

- Infrastructure investment decision making
 - Size, location, timing
 - Environmental externalities
Extensions

- Infrastructure investment decision making
 - Size, location, timing
 - Environmental externalities

- Consider intermodal competition
Thank you!

Questions?