A Data-Driven Paradigm for Arterial Traffic Flow Monitoring, Modeling, and Control

Dr. Henry Liu, Associate Professor
Department of Civil Engineering
University of Minnesota — Twin Cities

Seminar at Northwestern University
October 11, 2012
Ideally, for an Intelligent System

If you cannot tell the system performance yesterday, you cannot hope to manage your system today.
State-of-the-Practice in Traveler Info.

- Usually traveler information is available for freeways, so far NO arterial travel information is available.
- New wireless sensing technologies that can re-identify vehicles is promising.
State-of-the-Practice in Signal Operations

- The majority of transportation agencies DO NOT monitor or archive traffic signal data.
- Benefit/Cost ratio of signal re-timing is about 40:1; but usually traffic signal systems will be re-timed every 2 ~ 5 years.
- Adaptive signal control is implemented sporadically because most of them can only deal with lightly-congested situations.
Research Roadmap(I)

1. High-Resolution Data Collection
2. Performance Measurement
3. Operational Improvement
4. Real-time Adaptive Signal Control
Research Roadmap (II)

Stochastic Traffic Flow Theory

Prediction and Est. Algorithms

V2X Communication

Driver Advisory

Powertrain Opt.
The SMART Signal System Architecture

Field

- Signal Detectors
- Local Data Collection Unit

TMC

- Data Server
 - Raw Data
 - Performance Measures
- Firewall
- Web Server

Users

- Traffic Engineers
 - Monitor, Performance report, Diagnosis
- Road Users
 - Travel Time, Delay, …
1st Gen. Data Collection

- Off-the-shelf
- Windows based

(TH 55 & Bonne)
2nd Gen. Data Collection

- Plug-and-play
- Linux based

(TH 13 & Lynn Ave)
Event-Based Data

Detector #8 on at 08:09:15.012; Vacant time is 7.902s

Green Phase #3 off at 08:09:16.761; Green duration time is 29.389s

Detector #9 off at 08:09:18.307; Occupy time is 0.687s

Yellow Phase #3 off at 08:09:20.244; Yellow duration time is 3.482s

Green Phase #1 on at 08:09:23.242; Red duration time is 172.806s
Research Implementation Sites

- 11 intersections on France Ave. in Bloomington (March 07 – June 09)
- 6 intersections on TH55 in Golden Valley (Feb. 08 – Sept. 09)
- 3 intersections on PCD in Eden Prairie (Current)
- 6 intersections in Pasadena, CA (Iteris, Current)
- 13 intersections on TH13 (Dec. 2011, Current)
- 10 intersections on TH55 and 5 loop detector stations for I-394 (December 2012, Expected)
Performance Measurement Algorithms

- Queue length estimation
 - Delay, Level of Services, number of stops

- Identification of oversaturated conditions
 - Oversaturation Severity Index (OSI)

- Travel time estimation
 - Personal trip delay, number of stops, carbon footprint on travel
Queue Length Estimation

- Instead of traditional input-output approach, we estimate queue length by taking advantage of queue discharge process
- Based on LWR shockwave theory
Queue Length Estimation

- Utilize the data collected by advance detector
- Identify Critical Points: A, B, C
Traffic State Identification

(a) Detector Occupancy Time

(b) Time Gap Between Consecutive Vehicles

Pattern I: Capacity condition \((q_m, k_m)\)
Pattern II: Free flow arrival \((q'_m, k'_m)\)

Break Point C
Travel Time Estimation

- Track a virtual probe vehicle
 - Signal delay
 - Queuing delay
 - Acceleration/deceleration/no-speed-change
Virtual Probe Decision Tree

Safe Space Headway?

Yes

Queue Ahead?

No

Signal Status

Yellow

Able to Cross?

Yes

Red

No

Desired Speed

Speed of Last Queued Vehicle

< = > = < = > = < =

A N D N A N D N A N D
Field Tests on TH55 in Minneapolis

TH 55 2635 ft 842 ft 1777 ft

Advanced detectors Stopbar detectors Additional detectors

Independent Evaluation of Performance Measures on TH55

- By Alliant Engr. Inc
- Queue length
 - Manually count the vehicles (Two persons per approach)
 - Four peak hours (July 22nd and 23rd, 2009)
- Travel time
 - Floating car method with GPS
 - Four peak hours (July 22nd and 23rd, 2009)
 - More than 70 runs
Results – Maximum Queue Length

July 22nd for TH55WB at Rhode Island Intersection (AM)

July 23rd for TH55WB at Rhode Island Intersection (AM)
Results – Maximum Queue Length

MaxQL-Estimation vs. MaxQL-Observation (AM & PM)

Observation (ft)

Estimation (ft)
Results – Travel Time

Travel Time Estimation vs. Observation (July 22 & 23)
Performance Measurements
(http://dotapp4.dot.state.mn.us/smartsignal/)

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Queue Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (<10 sec)</td>
<td>< 400 ft</td>
</tr>
<tr>
<td>B (10~20 sec)</td>
<td>400 ~ 800 ft</td>
</tr>
<tr>
<td>C (20~35 sec)</td>
<td>>800 ft</td>
</tr>
<tr>
<td>D (35~55 sec)</td>
<td></td>
</tr>
<tr>
<td>E (55~80 sec)</td>
<td></td>
</tr>
<tr>
<td>F (>80 sec)</td>
<td>Spillover</td>
</tr>
</tbody>
</table>
Operational Improvement

- Problem Diagnosis
 - Functional diagnosis
 - Performance diagnosis
- Parameter Fine-tuning
 - Correctable offset
 - Correctable split
- Automatic Retiming
 - Pseudo-adaptive
Offset Fine-tuning

- Traditional offset optimization is deterministic, using MIPs
- Intersection queue is either ignored or exogenous
- Our approach is data-driven, scenario-based, and intersection queue is endogenously considered
- Formulated as a stochastic program
Delay Formulation

Intersection i

Intersection i+1

\[o_{i+1} \]

\[r_{i+1} \]

\[q_i^s \times h \]

\[d_i^c \]

\[o_i \]

\[r_i \]

\[d_i^g \]

\[t_i^q \]

\[A' \]

\[B' \]

\[C' \]

\[A \]

\[B \]

\[C \]
Results – Queue Reduction

Field Offsets: \{0, -24.9, -21.6, 4.6, -20.5, -11.9\}

Optimized Offsets: \{0, -21.4, -21, -20.9, -21.1, -21.2\}

<table>
<thead>
<tr>
<th></th>
<th>9/3/2009 (Field)</th>
<th>9/14/2009 (Optimized)</th>
<th>Change Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastbound Average Delay (Sec)</td>
<td>11.98</td>
<td>10.14</td>
<td>-15.3%</td>
</tr>
<tr>
<td>Westbound Average Delay (Sec)</td>
<td>78.48</td>
<td>70.84</td>
<td>-9.7%</td>
</tr>
</tbody>
</table>
Results – Delay Reduction

Intersection 4 EB
- Original offset
- Optimized offset

Intersection 6 EB
- Original offset
- Optimized offset
On-going research

- V2X and Smart-phone applications
 - Driver speed advisory
 - Driver routing advisor in a signalized network
Driver Speed Advisory

Distance

Int. j+1

Queue

Vehicle trajectory without advisory

Int. j

Vehicle trajectory with speed advisory

Time
Vehicle Routing in Traffic Signal Network
Concluding Remarks

- Although traffic is traditionally modeled as “continuous flow”, traffic, after all, is discrete.
- Measuring traffic flow parameters using the data collected at the individual vehicle level
- Technological advances support such data collection at affordable prices
- A number of applications can be developed based on the availability of such data
Acknowledgements
THANK YOU!

Dr. Henry Liu
612-625-6347
henryliu@umn.edu

SMART-Signal Web Site:
http://signal.umn.edu