Consumer Choice Between Gasoline and Sugarcane Ethanol

Alberto Salvo, Northwestern University
January 2011, Transportation Center @ NU
(joint with Cristian Huse, Stockholm)

“100%”

&

“33%”
Motivation

• Central policy aim: wean economies off fossil fuels (particularly oil derivatives)
 • Diversify energy sources
 • Curb emissions
 • Sustain growth

• Private road transport: large and growing sector
 • Gasoline-powered engine set to lose share
 • Alternative energy sources: electricity, biofuels

• How will motorists substitute away from century-old gasoline??
 • Price incentives required at pump or plug?
 • Research is scarce: RP studies cannot be conducted
 • Except Brazil: Gasoline × Alternative (Sugarcane Ethanol)
Alternative hypotheses & Preview

An example (lab measurements)
Fiat Palio ELX (Flex), 2 doors, 1.0 – 8V, manual transm., AC, hydraulic steering, city driving cycle:
Ethanol (E100): $e = 6.9 \text{ km/liter}$
Gasoline (E22): $g = 9.9 \text{ km/liter}$

Null: Perfect substitutes
$/\text{km Ethanol} = \$/\text{km Gasoline}$

Ethanol preference e.g., “green” types, “home bias”
State dependence e.g., short-run habit, inattentive, unwilling or unable to compare prices

Ethanol aversion e.g., “conventional” types, “range anxiety”

FIND: Observed + unobserved consumer heterogeneity:
+20% E v. G in $/\text{km} \rightarrow 20\% \text{ E}$
+20% G v. E in $/\text{km} \rightarrow 20\% \text{ G}$
Outline of talk

• A natural experiment
• Our opportune survey
• Brief descriptive stats
 • Empirical demand
• Demand estimates
 • Probits, Multinomial probits
 • Price sensitivity of “median” motorist
 • Elasticity matrices for subgroups: aged +65y
 • WTP for “greenness” and to relieve “range anxiety”
• A counterfactual
 • Planning the energy mix
World prices × local prices, 2000-2010

World prices*

WTI R$/bbl, & ISA R$ cents/lb

2003, 2006 and...2010: The pump price of Ethanol peaks when the world price of Sugar peaks

Prices at the pump in the city of São Paulo*

R$/liter

* Constant prices in Brazilian Real (R$), base Mar/10. Sources: EIA, ISO, IBGE (IPCA), Bacen
World/local sugar/ethanol markets: Arbitrage
Demand responds: Market-level data

Fuel shipments to stations, Total Brazil*

m³ / month

Early 2010:
- Fuel mix shifts
- Ethanol → Gasoline → Ethanol

Fuel shipments to stations, State of São Paulo*

m³ / month

Market-level study:
- Consumer heterogeneity?
- Poor data (e.g., FFV fleet size and usage)

* Source: ANP
Outline of talk

• A natural experiment
• **Our opportune survey**
• Brief descriptive stats
 • Empirical demand
• Demand estimates
 • Probits, Multinomial probits
 • Price sensitivity of “median” motorist
 • Elasticity matrices for subgroups: aged +65y
 • WTP for “greenness” and to relieve “range anxiety”
• A counterfactual
 • Planning the energy mix
Variation in relative per-liter prices, p_e/p_g

Evolution of the relative price of ethanol in the weeks about the week of January 25 2010
Percentiles of the distribution across stations surveyed by the regulator in each city

<table>
<thead>
<tr>
<th>City</th>
<th>Graph of p_e/p_g (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belo Horizonte</td>
<td></td>
</tr>
<tr>
<td>Curitiba</td>
<td></td>
</tr>
<tr>
<td>Porto Alegre</td>
<td></td>
</tr>
<tr>
<td>Recife</td>
<td></td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td></td>
</tr>
<tr>
<td>Sao Paulo</td>
<td></td>
</tr>
</tbody>
</table>

Number of weeks prior to (negative) or after (positive) week of January 25 2010

- $p_{e_rel_pg_p5}$
- $p_{e_rel_pg_p25}$
- $p_{e_rel_pg_p75}$
- $p_{e_rel_pg_p95}$

5th, 25th, 75th, 95th percentiles of distribution of Ethanol-to-regular-Gasoline price ratio over 1st Qtr 2010 in 6 main cities (source: ANP)

Approximate parity ratio, $p_e/p_g = 70\%$

Week of 11 Jan 2010

Week of 25 Jan

Week of 29 Mar 2010

Vertical lines: 9 city-weeks in our survey
Survey design

- 6 cities: SP, CTB, REC, RJ, BH, POA
- 9 city-weeks (3 weeks) in Jan and Mar 2010
- 2160 FFV motorists in 180 retail fueling stations
 - 12 motorists/station: pass filter & agree to interview
 - Private use (exclude cab and corporate use)
 - Week days + Saturday, rush hours + off-peak
 - Branded stations (29% BR, 27% Shell, 19% Ipiranga...)
- Instructed field representative to:
 - (Quietly) observe motorist’s choice (revealed preference)
 - E × G regular (plus, if available: G midgrade, G premium)
 - (Only then) approach motorist for short interview (“stated” preference)
 - E.g.: Main reason(s) behind fuel choice (“spontaneous” response); Car usage (km/week); Schooling
Fueling stations visited

- São Paulo
- Curitiba
- Rio de Janeiro
- Porto Alegre
- Belo Horizonte
- Recife
Outline of talk

- A natural experiment
- Our opportune survey
- Brief descriptive stats
 - Empirical demand
- Demand estimates
 - Probits, Multinomial probits
 - Price sensitivity of “median” motorist
 - Elasticity matrices for subgroups: aged +65y
 - WTP for “greenness” and to relieve “range anxiety”
- A counterfactual
 - Planning the energy mix
Station-level data (selected)

<table>
<thead>
<tr>
<th>Variable</th>
<th>January visits Mean (N, Std.Dev.)</th>
<th>March visits Mean (N, Std.Dev.)</th>
<th>Total visits Mean (N, Std.Dev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol price, p_e (R$/liter)</td>
<td>SP1 1.89 (20, .12) SP2 1.88 (20, .14) CTB 1.91 (20, .06) REC 1.89 (20, .04) RJ 2.18 (20, .15) BH 2.06 (20, .11) POA 2.32 (20, .10)</td>
<td>SP 1.46 (20, .14) CTB 1.33 (20, .06)</td>
<td></td>
</tr>
<tr>
<td>Per-liter ethanol-to-regular-gasoline price ratio, p_e/p_g (%)</td>
<td>SP1 74% (20, 3%) SP2 75% (20, 3%) CTB 75% (20, 2%) REC 75% (20, 2%) RJ 81% (20, 4%) BH 85% (20, 3%) POA 90% (20, 4%)</td>
<td>SP 59% (20, 4%) CTB 58% (20, 2%)</td>
<td>Price variation: Opportunity</td>
</tr>
<tr>
<td>Midgrade gasoline markup over regular (%)</td>
<td>104% (164, 3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of nozzles</td>
<td>13 (180, 6) E:4, G:5, midgr:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of station visit (hours)</td>
<td>2.5 (180, 1.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motorist-level data (selected)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>dv_male</td>
<td>2160</td>
<td>.658</td>
<td>.475</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_age_25to40y</td>
<td>2160</td>
<td>.463</td>
<td>.499</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_age_40to65y</td>
<td>2160</td>
<td>.395</td>
<td>.489</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_school_secondary_complete</td>
<td>2160</td>
<td>.281</td>
<td>.151</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_school_college_incomplete</td>
<td>2160</td>
<td>.121</td>
<td>.326</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_school_college_complctc</td>
<td>2160</td>
<td>.497</td>
<td>.500</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Value of fuel purchased</td>
<td>2160</td>
<td>46.973</td>
<td>29.601</td>
<td>10</td>
<td>158</td>
</tr>
<tr>
<td>Car usage</td>
<td>1835</td>
<td>296.094</td>
<td>319.930</td>
<td>5</td>
<td>3500</td>
</tr>
<tr>
<td>dv_reason_1_price_characteristic</td>
<td>2160</td>
<td>.683</td>
<td>.465</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_reason_2_range_or_price</td>
<td>2160</td>
<td>.263</td>
<td>.440</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_reason_3_environment</td>
<td>2160</td>
<td>.056</td>
<td>.230</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_reason_4_engine_performance</td>
<td>2160</td>
<td>.017</td>
<td>.211</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dv_reason_5_engine_startup</td>
<td>2160</td>
<td>.083</td>
<td>.276</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last two occasions chose this station 2X</td>
<td>2160</td>
<td>.513</td>
<td>.500</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last two occasions chose this station 1X</td>
<td>2160</td>
<td>.219</td>
<td>.413</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Fuel choices aggregated to station level

Vertical axis: p_e/p_g (per-liter prices)

Horizontal axis: “Unweighted” Ethanol share:

$$s^e_j = \frac{1}{12} \sum_{i \in O_j} \chi \left[qei \frac{k^\text{city}_e}{k^\text{city}_g} i > \sum_{f \in \{g, \bar{g}, \bar{\bar{g}}\}} q_{fi} \right]$$

Horizontal axis: “Weighted” Ethanol share:

$$s^w_e j = \frac{\left(\sum_{i \in O_j} qei \frac{k^\text{city}_e}{k^\text{city}_g} i \right)}{\sum_{i \in O_j} \left(qei \frac{k^\text{city}_e}{k^\text{city}_g} i + \sum_{f \in \{g, \bar{g}, \bar{\bar{g}}\}} q_{fi} \right)}$$
Controlling for “parity” differences across models

Vertical axis: 1 ppt bins:
\[\frac{p_{ei}}{p_{gi}} - \frac{k_{ei}}{k_{gi}} \]

E.g.: Motorist in Belo Horizonte in January, drove a VW Gol 1.0: 88.2% — 69.9% ≈ 18% → Enters the 18 ppt bin

(Equivalently:
\[\frac{p_{ei}}{k_{ei}} \approx 0.28 \text{ R$/km} \]
\[\frac{p_{gi}}{k_{gi}} \approx 0.22 \text{ R$/km} \]
0.06 R$/km, or 21%, discount represents 624 R$ per year)

Horizontal axis: Proportion of motorists in bin who chose ethanol as their dominant source of kilometers

Choosing Ethanol when Gasoline is cheaper per km (i.e., where \(\frac{p_{ei}}{k_{ei}} > \frac{p_{gi}}{k_{gi}} \))

Choosing Gasoline when Ethanol is cheaper per km (i.e., where \(\frac{p_{ei}}{k_{ei}} < \frac{p_{gi}}{k_{gi}} \))
Outline of talk

- A natural experiment
- Our opportune survey
- Brief descriptive stats
 - Empirical demand
- Demand estimates
 - Probits, Multinomial probits
 - Price sensitivity of “median” motorist
 - Elasticity matrices for subgroups: aged +65y
 - WTP for “greenness” and to relieve “range anxiety”
- A counterfactual
 - Planning the energy mix
Discrete choice specifications

- **Binary choice models:**

\[
\begin{aligned}
X \left[\sum_{f \in \{g, e, \bar{g}\}} q_{fi} \right] &> q_{ei} / \frac{k_{e}^{\text{city}}}{k_{g}^{\text{city}}} \\
1 &\text{ if } \delta_{i} + \varepsilon_{i} > \frac{p_{ei}}{p_{qi}} - \frac{k_{e}^{\text{city}}}{k_{g}^{\text{city}}} \\
0 &\text{ otherwise}
\end{aligned}
\]

- **Probit:** \(\varepsilon_{i} \sim iid \ N(0, \sigma^2) \)
- **Logit:** \(\varepsilon_{i} \sim iid \logit \)

- **Multinomial response models (multinomial probits):**

- **Motorist** \(i \) chooses fuel with maximal utility

\[
U_{fi} - x_{i}'\delta_{f} - \alpha p_{fi}/k_{f} + \varepsilon_{fi}, \quad f \in \{g, e, \bar{g}\}, \quad (\varepsilon_{a}, \varepsilon_{e}, \varepsilon_{\bar{g}}) \sim MVN(0, \Omega)
\]

and thus (to state one choice probability):

\[
\Pr (i \text{ chooses } e) = \Pr (U_{gi} - U_{ei} \leq 0 \cap U_{gi} - U_{ei} \leq 0) = \Phi \left(- \left((x_{i}'\delta_{f} - \alpha p_{fi}/k_{f}) - (x_{i}'\delta_{e} - \alpha p_{ei}/k_{e})\right), \Omega_{-e}\right), \quad f = g, \bar{g}
\]

Note 1: Standard errors clustered at the station visit level

Note 2: Relying on the moderate (within-route) price dispersion and consumers’ professed station loyalty, we ignore any substitution across stations
Multinomial probit marginal effects (other results omitted)

Specification (multinomial probit):

<table>
<thead>
<tr>
<th>Variable</th>
<th>I: m.e.</th>
<th>II: m.e.</th>
<th>III: m.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of (e) per km (mean = .268)</td>
<td>-3.961***</td>
<td>-3.933***</td>
<td>-6.345***</td>
</tr>
<tr>
<td>Price of (g) per km (mean = .246)</td>
<td>3.463***</td>
<td>3.424***</td>
<td>4.804***</td>
</tr>
<tr>
<td>Price of (\bar{g}) per km (mean = .257)</td>
<td>0.499**</td>
<td>0.509**</td>
<td>1.541***</td>
</tr>
<tr>
<td>(dv_{female}) (mean = .342)</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.010</td>
</tr>
<tr>
<td>(dv_{age_25to40y}) (mean = .463)</td>
<td>-0.057</td>
<td>-0.056</td>
<td>-0.064</td>
</tr>
<tr>
<td>(dv_{age_40to65y}) (mean = .395)</td>
<td>-0.054</td>
<td>-0.053</td>
<td>-0.075*</td>
</tr>
<tr>
<td>(dv_{age_morethan65y}) (mean = .037)</td>
<td>-0.255***</td>
<td>-0.254***</td>
<td>-0.276***</td>
</tr>
<tr>
<td>(dv_{school_some_secondary}) (mean=.310)</td>
<td>0.060</td>
<td>0.060</td>
<td>0.059</td>
</tr>
<tr>
<td>(dv_{school_some_college}) (mean = .618)</td>
<td>0.042</td>
<td>0.042</td>
<td>0.040</td>
</tr>
<tr>
<td>(dv_{heavy_car_user}) (mean = .229)</td>
<td>-0.086***</td>
<td>-0.086***</td>
<td>-0.092***</td>
</tr>
<tr>
<td>(dv_{pricey_car_model}) (mean = .262)</td>
<td>-0.049*</td>
<td>-0.050*</td>
<td>-0.046*</td>
</tr>
<tr>
<td>(dv_{reason_environment}) (mean = .056)</td>
<td>0.435***</td>
<td>0.436***</td>
<td>0.432***</td>
</tr>
<tr>
<td>(dv_{reason_engine}) (mean = .122)</td>
<td>-0.261***</td>
<td>-0.261***</td>
<td>-0.259***</td>
</tr>
<tr>
<td>(dv_{reason_range_75%tank}) (mean= .035)</td>
<td>-0.245***</td>
<td>-0.246***</td>
<td>-0.242***</td>
</tr>
<tr>
<td>(dv_{sao_paulo}) (Producer, mean = .333)</td>
<td>0.182**</td>
<td>0.169*</td>
<td>0.276***</td>
</tr>
<tr>
<td>(dv_{curitiba}) (Producer, mean = .222)</td>
<td>0.288***</td>
<td>0.163*</td>
<td>0.085</td>
</tr>
<tr>
<td>(dv_{recife}) (Producer, mean = .111)</td>
<td>0.173**</td>
<td>0.163*</td>
<td>0.094</td>
</tr>
<tr>
<td>(dv_{rio_de_janeiro}) (Importer, mean= .111)</td>
<td>0.086</td>
<td>0.073</td>
<td>0.097</td>
</tr>
<tr>
<td>(dv_{belo_horizonte}) (Importer, mean= .111)</td>
<td>-0.022</td>
<td>-0.038</td>
<td>-0.155</td>
</tr>
<tr>
<td>(dv_{porto_alegre}) (Importer, mean = .111)</td>
<td>-0.133</td>
<td>-0.038</td>
<td>-0.155</td>
</tr>
</tbody>
</table>

- **Age > 65y** → \(dv_{age_morethan65y} \) (mean = .037)
- **Heavy user** → \(dv_{heavy_car_user} \) (mean = .229)
- **Pricey car** → \(dv_{pricey_car_model} \) (mean = .262)
- **Environmental.”** → \(dv_{reason_environment} \) (mean = .056)
- **Invoke engine** → \(dv_{reason_engine} \) (mean = .122)
- **“Range anxiety”** → \(dv_{reason_range_75\%tank} \) (mean= .035)
- **“Home bias”** → \(dv_{sao_paulo} \) (Producer, mean = .333)

- Number of nozzles of \(e \) (mean = 3.900)
- Number of nozzles of \(g \) (mean = 5.044)
- Number of nozzles of \(\bar{g} \) (mean = 3.677)
Considerable “unobserved” consumer heterogeneity.

- The “median” motorist’s price responsiveness
 - Male, 25-40y, some college, neither uses car heavily nor drives a pricey model, invokes neither the environment, the engine nor range
 - Varying the ethanol price holding gasoline prices constant
- Baseline specification excluding city fixed effects (to conservatively reduce price range for switching)

Fuel choice probabilities for median motorist in specification without city fixed effects

Energy-adjusted gasoline prices held constant at 0.246 R$/km regular and 0.256 R$/km midgrade

<table>
<thead>
<tr>
<th>Parity: p_e/p_g</th>
<th>Simulated choice probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>0.246</td>
</tr>
<tr>
<td>60%</td>
<td>0.196</td>
</tr>
<tr>
<td>70%</td>
<td>0.146</td>
</tr>
<tr>
<td>80%</td>
<td>0.096</td>
</tr>
<tr>
<td>90%</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Effect on the probability of choosing ethanol from raising the ethanol price by 0.01 R$/km

Energy-adjusted gasoline prices held constant at 0.246 R$/km regular and 0.256 R$/km midgrade

<table>
<thead>
<tr>
<th>Energy-adjusted ethanol price in R$/km</th>
<th>Estimated marginal effect on ethanol and 95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.146</td>
<td>-0.06 -0.04</td>
</tr>
<tr>
<td>0.196</td>
<td>0.02 -0.04</td>
</tr>
<tr>
<td>0.246</td>
<td>0.06 -0.04</td>
</tr>
<tr>
<td>0.296</td>
<td>0.146 -0.196</td>
</tr>
<tr>
<td>0.346</td>
<td>0.246 -0.296</td>
</tr>
</tbody>
</table>
“Observed” heterogeneity: Hypothetical extremes

- “Ethanol fan”: Younger (<25y), some college, resides in Curitiba (capital of ethanol-producing state), spontaneously invokes the environment
- “Gasoline fan”: Older (>65y), no more than primary, resides in Porto Alegre (ethanol importer), heavy commuter, drives expensive model, invokes engine
- Baseline specification (hereafter)

<table>
<thead>
<tr>
<th>Energy-adjusted ethanol price in R$/km</th>
<th>Ethanol</th>
<th>Regular gasoline</th>
<th>Midgrade gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.146</td>
<td>0.196</td>
<td>0.246</td>
<td>0.296</td>
</tr>
<tr>
<td>0.196</td>
<td>0.246</td>
<td>0.296</td>
<td>0.346</td>
</tr>
<tr>
<td>0.246</td>
<td>0.296</td>
<td>0.346</td>
<td></td>
</tr>
<tr>
<td>0.296</td>
<td>0.346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.346</td>
<td>0.396</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulated choice probabilities:
- \(p_e/p_g \approx 50\% \)
- \(p_e/p_g \approx 60\% \)
- \(p_e/p_g \approx 70\% \)
- \(p_e/p_g \approx 80\% \)
- \(p_e/p_g \approx 90\% \)

Parity:
- \(p_e/p_g \approx 60\% \)
- \(p_e/p_g \approx 70\% \)
- \(p_e/p_g \approx 80\% \)
- \(p_e/p_g \approx 90\% \)
Price elasticity matrices: Effect of age

- Evaluated at the median of regressors:

<table>
<thead>
<tr>
<th>São Paulo, January, Age ≤ 65y</th>
<th>São Paulo, January, Age > 65y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in price</td>
<td>Change in choice probability</td>
</tr>
<tr>
<td>e</td>
<td>g</td>
</tr>
<tr>
<td>e</td>
<td>-1.77^{***}</td>
</tr>
<tr>
<td>g</td>
<td>1.49^{***}</td>
</tr>
<tr>
<td>ŝ</td>
<td>0.16^*</td>
</tr>
</tbody>
</table>

Median p_{fi}/k_{fi}^{city}:
- **0.262**
- **0.243**
- **0.253**

Choice probab.:
- **0.58**
- **0.38**
- **0.04**

Median p_{fi}/k_{fi}^{city}:
- **0.262**
- **0.243**
- **0.253**

Choice probab.:
- **0.30**
- **0.58**
- **0.12**

Notes: Standard errors in parentheses. * p<.1, ** p<.05, *** p<.01. p_{fi}/k_{fi}^{city} in R$/km$

Recall per-liter p_e/p_g:
- 74%
- 74%
WTP for “greenness” and to relieve “range anxiety”

- Median motorist in each of 3 cities with varying home bias
- Horizontal shifts provide natural measures for:
 - “Greenness”: Switch environ.-invoking reason on/off: .12 R$/km (.10 $/mi)
 - Relieve “range anxiety: Switch range-reason on/off: .07 R$/km (.06 $/mi)

![Diagram showing ethanol and gasoline choice probabilities](image)

Energy-adjusted gasoline prices held constant at 0.246 R$/km regular and 0.256 R$/km midgrade

Ethanol choice probabilities for median motorists with and without environmental concerns

Energy-adjusted ethanol price in R$/km

Energy-adjusted gasoline prices held constant at 0.246 R$/km regular and 0.256 R$/km midgrade

Gasoline choice probabilities for median motorists with and without range concerns

Energy-adjusted ethanol price in R$/km

Parity: p_e/p_g ≈ 70%
A counterfactual: Planning the energy mix

- A planner in the Amazonian state of Pará (pop 7.6m, 2/3 urban)
- Nation’s highest state sales tax on ethanol: 28% ICMS (v. 12% SP)
- Consider a plan to wean PA motorists (FFVs 45%) off gasoline
- Different scenarios, common message: Uptake of ethanol would remain limited
 - Qualifier: Ignores long run changes (preferences, behavior, information)

<table>
<thead>
<tr>
<th>State of Pará scenario: May 2010 “Current”</th>
<th>Counterfactual 1 Pricing parity</th>
<th>Counterfactual 2 12% ICMS tax (SP)</th>
<th>Counterfactual 3 0% ICMS tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_g, R$/liter</td>
<td>2.695</td>
<td>2.695</td>
<td>2.695</td>
</tr>
<tr>
<td>p_e, R$/liter</td>
<td>2.075</td>
<td>1.887</td>
<td>1.743</td>
</tr>
<tr>
<td>(Ratio) p_e/p_g</td>
<td>77%</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>ICMS in p_e, R$/l</td>
<td>0.581</td>
<td>0.393</td>
<td>0.249</td>
</tr>
<tr>
<td>p_g, R$/l (91% avail.)</td>
<td>2.799</td>
<td>2.799</td>
<td>2.799</td>
</tr>
</tbody>
</table>

Predicted ethanol share of ethanol-plus-gasoline “energy units” consumed:

| FFVs only, PA | 15% | 21% | 27% | 38% |

Notes: Pump prices are inclusive of ICMS sales tax
Takeaways

• Direct & transparent empirical strategy uncovers substantial consumer heterogeneity in the choice among century-old gasoline and a less-established alternative motor fuel
• Likely to generalize to other markets---and perhaps even in a magnified way
 • This setting: G & E similarly distributed, comparably priced and billed, almost identically consumed
 • Gasoline v. Alternative: Comparison can be less transparent!
• Observed heterogeneity
 • E.g., “Green” consumers do exist (not Prius status-seekers), Consumer’s age, Confusion about engine aspects
• Unobserved heterogeneity
 • Salience-raising policy considerations
Salience-raising example (among others)

- Mail cost conversion tables to households (or mandate per-liter price ratio to be displayed at the pump)