Reliable Facility Location: from Supply Chain Network Design to Traffic Sensor Deployment

Yanfeng Ouyang
Civil and Environmental Engineering
University of Illinois at Urbana-Champaign

(Joint work with Xiaopeng Li, Tingting Cui, Zuo-Jun Max Shen)

Symposium on Transportation Network Design and Economics
Northwestern University, January 29, 2010
Reliable Supply Chain Design

References

Introduction

- Location problem for supply chain design
 - Given customer distribution, find optimal facility number and location
 - Balance between facility costs and day-to-day transportation costs
Facility Disruptions

- Classical location models assume that the facilities remain operational once built.
- In reality, facilities may become unavailable from time to time:
 - inclement environment
 - natural disasters
 - labor activities
 - terrorist attacks or military actions
 - pandemic outbreaks
- Examples:
 - The 2005 Hurricane Katrina idled all facilities in the U.S. Gulf Coast region.
 - The west-coast port lockout in 2002 strangled U.S. retailers’ supply lines.
 - The 2003 massive power outage in the Northeast disabled all major transportation modes in that region.
Probabilistic Failure Scenarios

- Facility failure probability = long-term fraction of time for the facility to be in the failure state
- The number of failure scenarios *increases exponentially* with the number of facilities
Reliable Location

- When a facility fails, its customers
 - Seek more distant facilities (excessive transportation costs), or
 - Lose service (high penalty)

- Reliable planning against possible failure
 - Not only minimize facility and transportation costs in the normal scenario
 - But also hedge against costs under rare and unexpected disruptions
Assumptions

- Each facility is subject to probabilistic failure
- Failure probabilities are site-dependent and known \textit{a priori}
- Facility failures are independent (or correlated)
- Customer demand known and deterministic
- Each customer is assigned to a number of facilities
- If all assigned facilities have failed, the customer incurs a penalty cost
The Discrete Model

Input
- Discrete customer demand
- Discrete candidate locations
- Facility costs
- Facility failure probabilities
- Maximum assignment level

determine:
- Facility number and locations
- Customer assignment plan
 \((1^{\text{st}}\text{-choice facility, } 2^{\text{nd}}\text{-choice facility, } \ldots) \)

Solved by Lagrangian relaxation and other techniques
- Solve moderate instances (up to 150 nodes, customers visit at most 4 facilities) to 1% gap within 3600 CPU seconds
The Continuous Model

Continuous area S, at location x
- Customer demand density $\lambda(x)$
- Facility cost $f(x)$
- Failure probability $q(x)$
- Penalty cost $\varphi(x)$
- Maximum assignment level R

determine:
- Facility number
- Facility locations
- Customer assignment plan

Solved by the continuum approximation approach
- Quick approximate solution
- Near-optimum (~3% gap)
Supply Chain v.s. Traffic Sensor Network

<table>
<thead>
<tr>
<th></th>
<th>Supply chain</th>
<th>Traffic sensor network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-time cost</td>
<td>Facility construction</td>
<td></td>
</tr>
<tr>
<td>Day-to-day cost</td>
<td>Transportation/delivery</td>
<td>Surveillance effectiveness/error</td>
</tr>
</tbody>
</table>
Reliable Traffic Sensor Deployment

References

Benefits from Deploying Traffic Sensors

Flow Coverage (Single-Sensor Coverage)
- Aggregated traffic volume or vehicle count
- Speed
- Congestion at a point

Path Coverage (Two-Sensor Coverage)
- Disaggregated vehicle information
- Travel time estimation
- Congestion over a segment
Reliable Sensor Location

- When traffic units flow on a general large-scale transportation network, where shall we install sensors to best monitor traffic condition?
 - Limited budget (i.e., # of sensor installations)
 - Flow coverage v.s. path coverage

Traffic flow

Candidate location

Installed sensors
Reliable Sensor Location

- When traffic units flow on a general large-scale transportation network, where shall we install sensors to best monitor traffic condition?
 - Limited budget (i.e., # of sensor installations)
 - Flow coverage v.s. path coverage
- How to maximize the expected surveillance benefit under probabilistic sensor failures (Rajagopal and Varaiya, 2007; Carbunar et al. 2005)?
 - Known sensor failure probability
When traffic units flow on a general large-scale transportation network, where shall we install sensors to best monitor traffic condition?

- Limited budget (i.e., # of sensor installations)
- Flow coverage v.s. path coverage

How to maximize the *expected* surveillance benefit under probabilistic sensor failures (Rajagopal and Varaiya, 2007; Carbunar et al. 2005)?

- Known sensor failure probability
Reliable Sensor Location

- When traffic units flow on a general large-scale transportation network, where shall we install sensors to best monitor traffic condition?
 - Limited budget (i.e., # of sensor installations)
 - Flow coverage v.s. path coverage
- How to maximize the expected surveillance benefit under probabilistic sensor failures (Rajagopal and Varaiya, 2007; Carbunar et al. 2005)?
 - Known sensor failure probability
Reliable Sensor Location

- When traffic units flow on a general large-scale transportation network, where shall we install sensors to best monitor traffic condition?
 - Limited budget (i.e., # of sensor installations)
 - Flow coverage v.s. path coverage
- How to maximize the expected surveillance benefit under probabilistic sensor failures (Rajagopal and Varaiya, 2007; Carbunar et al. 2005)?
 - Known sensor failure probability
Possible Future Research

- Incorporate “user” behavior?
- Modeling failure mechanism?
 - Capacitated model
 - Partial capacity loss
 - Dynamic design
 - Frequency and duration of the disruptions
 - Cascading failure mechanism
 - Robust facility location?
- Other applications?
 - Urban infrastructure deployment