
David S. Bunch

University of California, Davis
Graduate School of Management
& Institute for Transportation Studies

Transportation Center Seminar Series, Northwestern University
Wednesday, August 12, 2009 (3:30 – 4:30 pm)
Outline

- History & Motivation
- Review of Feebate Concept
- Overview of UC Research Project
- Focus on “Feebate Analysis Model”
 - (More of a progress report)
- A couple of examples of previous policies
History & Motivation to Address GHGs

2002
California enacts its own law (Pavley) regulating GHG emissions.

2004
Automakers sue California in federal court, claiming Pavley = fuel economy standards, not an emissions regulation.

2006
California passes Global Warming Solutions Act (AB 32). Requires GHG emissions to return to 1990 levels by 2020.
- ~40% of GHGs come from transportation sector
- ~75% of these come from passenger vehicles

If “no Pavley,” requires alternative regulatory options to achieve same reductions.

Relevant “Technologies” [Remark: These are not policies…]
- Improved vehicle technology, alternative fuels, VMT reduction
The Role of California?
More Recent Events (-cont.-)

z April 2007
 y US Supreme Court declares CO_{2} a pollutant under the Clean Air Act and should thus be regulated by the EPA

z December 2007
 y Congress passes the Energy Independence and Security Act
 x Requires fuel economy increase to at least to 35 mpg by 2020
 x => Reduction in CO_{2} emissions of at least 30 percent by 2020.
 y EPA denies California waiver. California and 17 other states file suit.

z September 2008
 y California Air Resources Board solicits the research study on Feebates

z January 2009
 y UC team starts the Feebate Research Project
 y President Obama orders EPA to review decision on California waiver
The Feebate Concept

- A fiscal policy combining
 - A **FEE** on inefficient vehicles
 - A re**BATE** on efficient vehicles.

- (In)efficiency **measure** = Emissions per mile

- A **benchmark (or “pivot point”)**
 - Defines which vehicles get fees / rebates

- A **functional form** determines payment amount
 - Frequently there is a **rate** parameter that can be used to adjust these.

- There are also important options for:
 - **Implementation** strategies
 - **Locus** of monetary transaction
Simplest Feebate

Simplest feebate is linear in GHG emissions per mile. Here, benchmark is origin, rate, R, is slope of the line. System is revenue neutral if right benchmark chosen.

$$Feebate = Rate(E_o - E)$$

Northwestern - 8/12/2009
A feebate can be viewed as a capitalized tax on future GHG emissions.

\[PV = \int_{t=0}^{L} C(E_0 - E)M_o e^{-\delta t} e^{-rt} dt \]

Assuming:
- 14,000 miles/year when new
- Decreasing at 4%/year
- Discount rate of 7%/year
- Expected life of 14 years

\[PV = C(E_0 - E)100,000 \]

\[PV = \frac{$100}{tCO_2} \left(\frac{1g}{mi} \right) 100,000mi \Rightarrow R = \frac{$10}{g / mi} \]
UC Feebate Research Project: Overview

Research Purpose
- The UC Feebate study for the California Air Resources Board will comprehensively support their decision-making about feebates.

Research Objectives
- Design and assess feebate policy options from multiple perspectives, and make recommendations (!)
 - Qualitative: Reaction/opinions of stakeholders
 - Administrative: Real-world implementation issues
 - Quantitative: Forecasts of consumer & manufacturer behavior
 - Policy/Other: Interaction with other GHG policies
Task Overview

Task 1 Lessons Learned

Task 2 Focus Groups and Interviews

Task 3 Policy Formulation

Task 4 Feebate Analysis Model

Task 5 Policy Analysis

Task 6 Policy Implications

Task 7 Statewide Survey

All Tasks

Final Project Report

Northwestern - 8/12/2009
UC Feebate Research Project: Personnel

z Co-Principal Investigators
 y David S. Bunch, UC Davis
 y David L. Greene, Oak Ridge National Labs

z Berkeley
 y Tim Lipman, Susan Shaheen
 y Walter McManus (University of Michigan)

z Other personnel
 y Chris Knittel (Econ, UC Davis)
 y Yueyue Fan (Civil & Env Eng, UC Davis)
 y David Brownstone (Econ, UC Irvine)
 y Students:
 x Andy Lenz, Changzheng Liu, Amine Mahmassani
Task 4: Feebate Analysis Model Development

Two-Tiered Modeling Approach

Manufacturer Decision Model (MDM)
- Vehicle offerings characterized at the vehicle configuration level (year/make/model/engine/transmission)
- Given scenario inputs, model their decisions wrt what vehicles to produce and offer for the period 2008-2025
- Primary “decision”: How much to improve fuel economy?
- Aggregate-level national New Vehicle demand model

California Vehicle Market Simulation Model
- Uses vehicle offerings from MDM as inputs
- More comprehensive, detailed disaggregate demand model
- More detailed analysis of Feebate policy impacts
 - Includes both used and new vehicles, household segments, etc.
Manufacturer Decision Model

*z Modeling Consumer Demand

- Functional Form: Nested Multinomial Logit
- Multi-level Market Structure (5 levels)
 - Buy versus No Buy ("outside good")
 - IF Buy: Passenger Vehicle versus Cargo Vehicle
 - IF Passenger Vehicle
 - Two-seat/Standard Car/Prestige Car/Standard SUV/Prestige SUV/Minivan
 - [One more level, then Vehicle Configs]
 - IF Cargo Vehicle
 - Cargo Van versus Pickup Truck
 - [One more level, then Vehicle Configs]

- At the penultimate level: 20 Vehicle Classes
- At the bottom level: Over 800 vehicle configurations
Nested Logit Demand Model –cont.-

z Actually: Three separate NMNL models
 y California, “Pavley States”, Rest of United States

z Model is “calibrated” (not estimated) using a “base year”
 y Inputs
 x Researcher assumptions on demand elasticity patterns in the tree
 (equivalently, assumptions on NMNL inclusive value parameters)
 x Aggregate sales data from base year (2007)
 y Output
 x Value for “marginal utility of money” (β)
 x Alternative-specific constants for all vehicle configurations

z Vehicles can be “redesigned”
 y Fuel economy can be improved => a fuel savings benefit to consumer
 y But, fuel economy improvement => tech cost added to vehicle price
 y [See next slide]
Technology Cost Curve

Greenhouse Gas Mitigation Cost Curve:
Canadian Large Domestic Car (EEA, 2005)

$3,500
$3,000
$2,500
$2,000
$1,500
$1,000
$500
$0

Increase in RPE

0% 10% 20% 30% 40%
Percent GHG Reduction

y = 18410x^2 - 292.01x
R^2 = 0.9973
Nested Logit Demand Model –cont.-

- **Consumer utility function** (bottom level)

\[U_j = A_j + B_{t(j)}G_j \]

where

- \(A_j \) = base year alternative-specific constant for vehicle \(j \)
- \(t(j) \) denotes vehicle class that vehicle \(j \) belongs to
- \(B_{t(j)} \) is a “slope parameter” (behaves like a price coefficient)
- \(G_j \) is a “generalized cost” (i.e., uses dollar units)

Before any redesign, \(G_j = 0 \).

If vehicle emission rate is improved by \(\delta \)

\[G_j = -\text{RPE}(\delta) + \text{Fuel}_\text{Savings}(\delta) \]

In a Feebate system

\[G_j = -\text{RPE}(\delta) + \text{Fuel}_\text{Savings}(\delta) + \text{Feebate}(\delta, \text{other stuff}) \]
Manufacturer’s Decision Problem

[Lots of possible versions, but…]

Over “some planning horizon”

\[
\text{Max } \text{Objective}_\text{Function}(\delta)
\]

\[
\delta
\]

Subject to: \textbf{Constraints}

\begin{itemize}
 \item Examples: CAFÉ constraints, Pavley constraints, constraints constructed to implement rules about banking and trading credits
\end{itemize}

Objective function options?

\begin{itemize}
 \item Profit?
 \item Consumer Surplus?
\end{itemize}

[We are using Consumer Surplus via NMNL expressions]
Even MORE Recent Events Affect The Model!

March 2009
- NHTSA raised fuel efficiency standards for cars to 30.2 mpg and to 27.3 mpg for minivans, SUV’s and light trucks.

April 2009
- EPA confirmed that CO₂ emissions pose a threat to human health and welfare and should be regulated by federal law.

Tuesday May 19, 2009
- President Obama sets historic fuel efficiency and emissions standards
 - For the first time, CO₂ emissions placed under federal control
 - Reduction = 900 million metric tons, 30% decrease by 2016
 - (And/or?) 30% reduction in new vehicle fleet fuel economy (35.5 mpg) = most aggressive increase in U.S. history
CAFE Model for Period 2008-2010

[This “moves” the base year to 2010.]

\[
\text{CAFE Model}
\]

\[
\max \sum_{t} (1+r)^{-t} \Delta CS(t) \tag{1}
\]

s.t.

\[
\sum_{i=1}^{N_{m,k,c}} \frac{1}{MPG_i(t)} \leq \sum_{i=1}^{N_{m,k,c}} \frac{1}{MPG^{*}_{k,c}(t)}, \forall k, \forall t, \forall m \in M1 \tag{2}
\]

\[
e_i(t) = 1/ MPG_i(t) \times g2 e \tag{3}
\]

If \(\text{timing} (i, t) = 0 \), \(MPG(i, t) = MPG(i, t-1) \), \(\forall i, t \) \(\tag{4} \)
Emissions Model for Period 2011 to ? [2025?]

\[
\max \sum_i (1+r)^{-t} \Delta CS(t)
\]

(1)

\[
Credit(t) = \sum_i S_i(t)(e_i(t) - e_i(t)) \text{ total } \text{ sales}(t), \forall t
\]

(2)

\[
Credit(t) + \sum_{t=5}^{t=1} CC(t, t) - \sum_{t=1}^{t=5} CC(t, t) \geq 0, \forall t
\]

(3)

\[
\sum_{t=5}^{t=1} CC(t, t) * \sum_{t=1}^{t=5} CC(t, t) = 0
\]

(4)

\[
CC(t, \tau) \geq 0, \forall t, \tau
\]

(5)

\[
e_i(t) = 1 / MPG_i(t) * g2e
\]

(6)

If \(timing(i, t) = 0 \), \(MPG_i(t) = MPG_i(t-1), \forall i \)

(7)
Implementation and Prototype Case

- Models are implemented in GAMS
- Features of Prototype Model:
 - Feebate Function is Linear
 - Rate factor = $20 per gram CO₂ per mile
 - Benchmark is complicated
 - Uses the new NHTSA Footprint Curves
 - [See next slide]
- Other
 - Vehicles have a fixed redesign cycle
 - “Industry Level” optimization of Consumer Surplus over entire planning period (one optimization)
 - Full model includes: CAFÉ/Emissions Std, Banking and Trading
Feebate benchmarks could be vehicle class-specific or could even be a function of footprint, like the new CAFE footprint standard.
Results: Limited thus far....
Still Much To Do: Alternative Policy Options

- **Functional Forms**
 - Straight Lines versus Step Functions

- **Alternative Benchmarks**
 - One benchmark for all vehicles
 - Two: Passenger cars and Light duty trucks
 - Class based: 11 classes? 14 classes?
 - [Footprint you have seen]

- **Rate factors**: Range from $10 to 30 grams per CO₂ per mile

- **Lots of combinations!**

- **Issues**
 - Revenue neutrality
 - “Surprises”
 - Role of vehicle performance
U.S. Gas Guzzler Tax

= Half a feebate system.
Is a step function rather than a straight line.
R is approx $1,800/0.01gal/mi (= $20/g/mi)

Approximately $1,800 per 0.01 gallons per mile.
France’s bonus/malus feebate

It is also a step function.

\[R \approx \$16.50 \text{ per g/mi (}\$1,500 \text{ per 0.01 gal/mi)} \]
Recent ‘Lessons Learned’

z France’s bonus/malus system has already had a large effect on vehicle sales.

z Meeting with M. Boccon-Gibod, French Ministry of Finance.

z In 2007:
 y 30% of passenger cars sold in France had emissions rates < 130 g/km.
 y 45% were in the range 130-160 g/km.
 y 25% emitted more than 160 g/km.

z In 2008:
 y 43% emitted < 130 g/km.
 y 42% emitted between 130-160 g/km.
 y 15% emitted more than 160 g/km.
Additional Issues

z Implementation options
 y Immediate implementation
 y 2-year delay
 y Phase-in by increasing slope
 y Phase in by transition from net subsidy to revenue neutrality
 y Phase in by closing “doughnut hole” (next slide)

z “Locus of monetary transaction” options
 y State-to-manufacturer
 y Dealer-to-customer
 y State-to-customer
What is a closing doughnut hole?

$ Feebate$ Feebate

(E-E_0)$

$ Feebate$
Options for Rates

- We* are currently considering a range of $10-$30 per g/mi.

- Replacement of Pavley will require allowing the feebate rate to be determined by the need to reduce emissions.

- Feebate rates higher than a cap-and-trade C price can be justified:
 - Correct market imperfection
 - Reduce oil dependence

*Should not imply any current decisions by CARB.