Martin W.P. Savelsbergh
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Analysis of Dispatch Policies for a
Dynamic Multi-Period Routing Problem

ABSTRACT:
We investigate a dynamic multi-period routing problem where, at the beginning of each time
period, orders arrive that have to be fulfilled either in that time period or the next. Thus, in each
time period there are customers which have to be served and customers whose service may be
postponed. Once it has been decided which customers to serve, an optimal route is constructed and
executed. The objective of the problem is to minimize the average distance traveled per time
period. Deciding which customers to serve in a time period is done on the basis of incomplete
information. No knowledge is available about customers requiring service in future time periods.
We introduce simple online algorithms, i.e., dispatch policies, and analyze these algorithms by
studying their competitive ratio and conducting an emperical study. We conclude by considering a
stochastic variant in which we do have some knowledge about customers requiring service in future
time periods.

Bio
Martin Savelsbergh is an optimization and logistics specialist with over 20 years of experience in
mathematical modeling, operations research, optimization methods, algorithm design, performance
analysis, logistics, supply chain management, and transportation systems. He has published over 80
research papers in many of the top optimization and logistics journals. He has a track record of
creating innovative techniques for solving large-scale optimization problems in a variety of areas,
ranging from supply chain master planning and execution, to world-wide tank container
management, to vehicle routing and scheduling problems.

Martin Savelsbergh is professor in ISyE and research director of The Logistics Institute. He is
actively involved in on-going industrially sponsored research projects at The Logistics Institute,
including the development of congestion management technology for Yellow Roadway, a large
LTL carrier, the development of order acceptance and flight scheduling technology for DayJet, a
per-seat on-demand air transportation service provider, the development of cost-to-sell analysis
technology for Praxair, a large industrial gas distributor, and the development of collaborative
transportation procurement technology for RubberNetwork, a conglomerate of tire companies.