A **Flat World** is an exciting but dangerous world...
Accidents in remote plants can have large consequences for a supply chain...
Natural Disasters can disrupt business around the globe...
Terrorism has a wider reach than ever before...
A basic principle from Factory Physics is central to security engineering.

Buffering Principle: Systems with variability must be buffered by some combination of:

1. inventory
2. capacity
3. time.

Buffer Flexibility Corollary: Flexibility reduces the amount of variability buffering required in a production system.
Strategies for dealing with risks depend on likelihood and severity of event.
Redundancy in a supply chain can be either inventory or capacity.

Insight: usually optimal to place protection at a single level in the supply chain.
Flexible buffers are more effective than rigid ones

Full Flexibility

Chained Flexibility

Sub-Chained Flexibility

production plant demand type
Supply chain disruptions can have both tactical and strategic consequences.
Impact of a supply chain disruption on sales revenue

![Impact of a supply chain disruption on sales revenue diagram]

- **Pre Event**
- **Disruption Event**
- **Pent-Up Sales**
- **Post Event**

- Short Term Sales Loss
- Market Share Loss
Impact of maintaining an inventory buffer

![Graph showing the impact of inventory buffer]

- **Sales Revenue**
 - **Time**
 - Pre Event
 - Disruption Event
 - Pent-Up Sales
 - Post Event

The graph illustrates the sales revenue over time, highlighting the pre-event, disruption event, pent-up sales, and post-event periods.
Impact of securing a **backup capacity supply**

![Graph showing impact of securing backup capacity supply](chart.png)

Sales Revenue vs. Time

- **Pre Event**
- **Disruption Event**
- **Pent-Up Sales**
- **Post Event**
Contingency Planning is one way to prepare for risky events.

Anticipate → Plan → Prepare → Event → Execute

Update
We can use network theory to measure structural flexibility in organizations.

The smaller the **average path length** of the worksharing matrix, the more robust the system is to routine variation and exceptional disruptions.
Globalization, connectivity and complexity are posing serious new security threats.

Factory Physics and Network Science are useful tools in the emerging field of Security Engineering.
Thank you on behalf of the OPEM Research Group!

Operations Mgmt
- Zigeng Yin: Robust Supply Chains
- Wendy Lu Xu: Terrorist Supply Chains
- Jie Xu: Integrated Product and Supply Chain Design
- Rob Lien: Flexible Transshipment Systems
- Bora Kofal: Flexibility in Production and Service Systems

Social Networks
- Bilal Gokpinar: Innovative Team Structure
- Yao Cheng: Crisis Management
- Fang Liu: Innovation Networks
- Gigi Yuen: White Collar Work Systems

www.opem.northwestern.edu